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1. INTRodUCTIoN
Ageing of composite solid rocket propellants results 

in	 deterioration	 in	 performance.	 The	 significant	 effect	 of	
environmental conditions, exposure duration and performance 
variation are studied by various researchers under ageing 
studies with an aim to predict shelf life or operational life of 
various propulsion systems. Since solid rocket propellants, 
used in rockets and missiles is the fastest degrading component 
of the complete system, shelf life of the system is mainly 
governed by the life of the propellants. The main variety of 
composite solid rocket propellants for rockets and missile 
application is composite propellant, based on hydroxyl 
terminated polybutadiene (HTPB), ammonium perchlorate 
(AP), and aluminium (Al) powder. Since they are used in both 
cartridge loaded and case bonded modes in actual applications, 
several attempts are made to study their shelf life under 
elevated temperature ageing1-3. However, earlier attempts were 
made to study the shelf life of conventional nitrocellulose and 
nitroglycerin based double base propellants and other classes of 
propellants4,5. Methodologies, practical results, modeling and 
analysis of ageing and service life predictions for all classes 
of the propellants is illustrated in advisory group for aerospace 
research and development (AGARD) report6.

For	 ageing	 study,	 the	 first	 part	 is	 the	 selection	 of	 a	
measurable parameter, which changes appreciably with time. 
Plasticizer content, gas evolution, thermal and vacuum stability, 
mass loss on heating, autoignition, mechanical properties 
degradation, change in ballistic performance, etc are invariably 
used for assessment of shelf life of double base propellants7. 

Molecular weight reduction of nitrocellulose and diffusion of 
surface coating agents to propellant are studied for prediction 
of shelf life of the double base propellants8. However, due to 
chemical	cross-linking	in	composite	propellants,	it	is	difficult	
to apply the same criteria to the composite propellants. Failure 
of Arrehenius type degradation equations to predict ageing 
behaviour of composite propellants is deliberated in open 
literature9. Modeling for ageing of HTPB based composite 
propellants using different activation energy is carried out and 
effect on shelf-life is established10. In addition to selection of 
parameter,	 the	 deterioration	 criteria	 should	 be	 well	 defined	
also. In general uni-axial tensile testing results are easily 
measurable	and	the	results	vary	with	time	significantly	for	the	
composite propellants. In fact, raising temperature can further 
enhance the variation of mechanical properties under uni-axial 
tensile loading. Generally, 30 per cent variation in properties is 
taken as end of useful shelf life of the propellant. However, this 
criterion is derived from structural analysis of propellants for 
adequacy of margin of safety for subjecting mechanical loads. 
In fact mechanical processes in composite propellants may 
initiate micro-failures of propellants, subsequently resulting in 
an acceptable degradation of propellant properties. Mechanical 
loads introduced in composite propellant may be primarily 
due thermal cool down. Inner bore, grain termination areas 
and the propellant bond lines are highly stressed portion of 
the propellant grains11. Dynamic mechanical analyser (DMA) 
is used to characterise damaged propellants and service life 
of more than 15 years is predicted, but is treated as only 
indicative of a trend during ageing12. Using DMA, increase 
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in modulus on ageing is established for composite propellant 
and the suggested mechanism is the disappearance of gel 
fraction by cross-linking to the main network due to oxidation 
of HTPB molecules during ageing13. The ageing of composite 
solid propellants becomes interesting but complex due to 
four common material non-linearity: (i) strain sensitivity,  
(ii) volume change or dewetting, (iii) thermo-mechanical 
coupling, and (iv) damage and reheating effects14. For plateau 
burning composite propellants, burning rate, and thermal 
decomposition are established as major degradation criteria, 
relegating	 mechanical	 properties	 degradation	 as	 significant	
over the tested period of 32 weeks15.

For the current study, HTPB based composite solid rocket 
propellants-based on  toluene diisocyanate (TDI) cured HTPB/
AP/Al system is taken. Propellant specimens are tested in 
uni-axial tensile mode at different time steps and variation 
of tensile strength with ageing time is measured. The rate of 
variation of tensile strength is established for different classes 
of composite solid rocket propellants-based on regression 
analysis. Degradation criteria are selected arbitrarily to 
numerically illustrate shelf-life prediction approach. 

2. ExPERIMENTAl RESUlTS
Propellant blocks are kept for prolonged duration at 

27 °C ± 5 °C and at different lapsed time double dumbbell 
propellants specimens conforming to ASTM D638 type IV16 
dimensions are prepared. They are tested using a constant 
rate of travel universal testing machine at a speed of 50 mm/
min. The environmental conditions during test are maintained 
as  27 oC ± 2 oC and 50 ± 5 per cent relative humidity. The 
specimens are gripped at a grip distance of 60 mm and gage 
length is taken 45 mm for the propellant specimen. The initial 
cross-sectional	area	is	measured	using	vernier.	Minimum	five	
specimens are tested at each condition and reported results are 
consistent average results. The standard deviation over mean 
value for all the curves is maintained less than 1 per cent. 

For the analysis two classes of composite propellants are 
considered.	 Cartridge	 loaded	 composite	 propellants	 (CLCP)	
have high strength and low elongation and are stored in 
ambient environment for prolonged duration. The propellant is 
an aluminised composite propellant (HTPB/AP/Al–15/67/18) 
cured by TDI  with an NCO/OH ratio of 0.7. Mechanical 
properties are evaluated at regular intervals and resulting 
stress-strain curves under uni-axial tensile testing is depicted 
in Fig. 1. At the end of curing cycle, propellant exhibited high 
elongation, which continues to reduce with time. The initial 
modulus or slope of stress-train curve at zero strain continues 
to increase with time. The tensile strength is found to increase 
with time. 

Another class of propellants used in rockets and missiles 
is called a case-bonded composite propellants (CBCP). They 
are cast directly in insulated rocket motors and are cured along 
with the casing to form integral part of the casing. This type of 
propellants has high elongation and moderate strength. HTPB-
based aluminised propellant (HTPB/AP/Al – 16/68/16) with 
TDI as curing agent with an NCO/OH ratio of 0.6 is taken. 
The propellant is not case-bonded, but cast and cured in stand 
alone mode. Ageing studies are carried out for CBCP using 

similar test conditions and specimen sizes as depicted above. 
The variation of stress-strain curve at different ageing time 
for a CBCP is shown in Fig. 2. All three parameters namely 
modulus, elongation and tensile strength showed the same 
trend	with	time	as	shown	by	CLCP.

For comparison of both the types of propellants, stress-
strain curve under standard condition at the beginning of 
ageing cycle for both classes of propellants is shown in Fig. 3 
on the same scale. Relative values of their strength, modulus 
and elongation are clearly depicted in the Fig. 3. Case bonded 
propellants exhibited low strength, high elongation and low 
modulus than cartridge loaded propellants. 

As far as stress-strain curves are concerned, three main 
parameters are present for assessment of ageing–modulus, 
percentage elongation and tensile strength. Any one of the 
three can be taken as degradation criteria. In fact degradation 
mechanism brings down percentage elongation and increases 
modulus and tensile strength of both the classes of propellants. 
Composite propellants are chemically cured solid masses 
with an NCO/OH ratio of around 0.7-0.8. At the beginning 
of curing cycle, the propellant has low strength, which 
builds up during curing at elevated temperature. In the initial 
days,	 property	 changes	 are	 significant,	which	 dies	 down	 in	
the course of time. When there is no appreciable change in 
properties, the propellant is said to have cured and is taken 

Figure 1. Stress-strain curves for ClCP at different ageing 
time.

Figure 2. Stress-strain curves for CBCP at different ageing 
time.
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out for further testing or use. However, the chemical cross-
linking reaction continues but at a slower pace and hardening 
of composite propellants is attributed to more cross-linking at 
prolonged storage. Since composite propellant manufacture 
is well established, the curing cycle and duration for cure-
completion time is established by trials, cross-linking 
density is not assessed. However, degradation mechanisms 
for composite propellants is stated in the literature to be 
chemical cross-linking rather than plasticiser migration or 
evolution of gases (stability criteria), as used for double 
base propellants. It is ease of measurement and appreciable 
changes in the properties, which governs the selection of 
control parameters. 

The arbitrariness of selection criteria for degradation 
of propellant ageing is clear from the fact that even shore a 
hardness of propellant, which is a surface property and is a non-
destructive test method is used for assessment of degradation of 
composite propellants17. Cross linking density and mechanical 
properties are correlated during ageing of composite propellants 
using sol fraction assessment18. Modulus is slope of the stress-
strain curve at initial stage and it cannot be reliably measured 
due to the initial kink formation and continuous variation in 
values with strain. The percentage elongation at break varies 
with the extent of necking exhibited by the propellants. At 
high temperature, some propellants have tendency to neck and 
elongate more after attaining a maximum stress. However this 
behaviour is not very consistent. Clearly, maximum stress in 
the stress-strain curve or tensile strength is the left parameter to 
be	considered,	which	changes	significantly	during	ageing	and	
changes can be measured easily. 

Although any of the selection parameter indicates the same 
degradation mechanism of propellant, it is ease of measurement, 
adequate representation of ageing and appreciable change in 
properties, for which tensile strength is taken as degradation 
criteria. Appreciably it seems to represent an enhancement in 
strength of propellants, but it is also indication of reduction in 
percentage elongation, which is adverse for structural integrity 
of the propellants. So, tensile strength is selected as degradation 
criteria and not the end requirement. In fact many degradation 
mechanisms are possible for composite propellants and it 
cannot be attributed to any single reason9. 

3. ANAlySIS ANd dISCUSSIoN
The	 mechanical	 properties	 of	 CLCP	 at	 the	 start	 of	 the	

ageing period (immediately after curing) has percentage 
elongation of around 23.33 per cent and has a tensile strength 
of  1.39 MPa. The elastic modulus is depicted in Fig. 4 as 
9.30 MPa. The point of maximum stress (tensile strength) has 
slightly higher value on stress axis and lower value on strain 
axis than break point. 

As time progresses, tensile strength increases and 
percentage elongation reduces (Fig. 2). This makes propellant 
brittle due to more cross-linking and oxidation and makes it 
unsuitable for further use. Variation of tensile strength with 
time	(t	in	days)	can	be	represented	by	a	polynomial	fit	as	given	
by Eqn (1). 

Tensile strength (MPa) = 0.0014 x (time in days) + 1.39
(1)

This equation gives a continuous rise in tensile strength with 
respect to time. If tensile strength of 2 MPa denotes degraded 
propellant, then it is achievable in 433 days from the Eqn (1), 
derived from the practical prolonged storage data for as class 
of	typical	CLCP.	For	CLCP,	variation	of	percentage	elongation	
is	very	significant	and	is	the	main	mechanical	parameter	to	be	
observed. A marked variation is observed between 15 days and 
138 days, after which variation is sluggish. Investigation on 
percentage elongation needs further studies.

For the other class of propellant CBCP, with lapse of 
time, tensile strength and percentage elongation show similar 
trends. Because the main matrix is same and cross-linking 
mechanism and effect of temperature is also same, a similar 
trend of variation of properties is expected. Stress-strain 
curve of a typical CBCP at a reference ageing time is given 
in Fig. 5. It has a lower tensile strength of 0.665 MPa and 
strain at maximum stress is higher (36.35 per cent). The value 
of elastic modulus (3.4 MPa) is much lower than a typical 
CLCP	(9.30	MPa)	depicted	in	Fig.	4.	One	major	difference	is	
in the fact that maximum stress point is separated from break 
point. Stress at break point is lower than tensile strength and 
strain at break is higher than that at maximum stress point. 
However, ageing characteristics are similar but the rate of 
change of various properties is different. Here also tensile 
strength changes at a faster pace in the beginning and later on 

Figure 3. Reference stress-strain curves for ClCP and 
CBCP.

Figure 4. Reference stress-strain curves for ClCP.
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it becomes sluggish. Variation of tensile strength with lapse of 
time can be depicted by Eqn (2) as a linear curve.

Tensile strength (MPa) = 0.0025 x (time in days) + 0.665 (2)
However, this variation again depicts a monotonically 

increasing tensile strength with time, which is not the fact. 
However, it is clear from the Eqn (2) that the rate of change 
of tensile strength with time is faster for CBCP. This is 
represented by the higher value of slope (0.0025) in Eqn (2) wrt  
(0.0014) in Eqn (1). If strength enhancement to 1 MPa is taken 
as degradation criteria of the propellant, then this propellant 
degrades in 144 days only. 

For both the classes of propellants, degradation criteria 
can be given as some percentage change in the initial value of 
the tensile strength. Predicted life for both types of propellants 
are	 given	 in	Table	 1.	 It	 is	 clear	 that	CLCP	has	 higher	 shelf	
life than CBCP. This is because both higher tensile strength 
and	lower	degradation	rate	(slope)	are	in	favor	of	CLCP.	For	
comparison a trial property and slope is also added as one 
column	 in	 Table	 1.	 Comparison	 of	 data	 of	 CLCP	 and	 trial	
indicates that trial has lower shelf life. This is due to lower 

value of initial tensile strength of the trial. Comparison of 
CBCP and trial indicates that trial has higher shelf life because 
it has a slower degradation rate.

4. CoNClUSIoNS
Tensile testing specimens of two classes of composite 

solid	rocket	propellants	namely	cartridge	loaded	(CLCP)	and	
case-bonded (CBCP) are evaluated at different ageing time 
in uni-axial tension using a constant rate of travel universal 
testing machine. Tensile strength of both classes of propellants 
increase with time and percentage elongation reduces. It is 
observed	 that	 CLCP	 has	 slower	 degradation	 rate	 and	 has	
a higher shelf life as compared to CBCP. This is because of 
higher	 initial	 strength	 and	 lower	 degradation	 rate	 of	 CLCP.	
Shelf life for different degradation criteria is also predicted 
using linear degradation criteria. 
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