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ABSTRACT

The influence of constant stresses on velocities of propagation of
transverse surface wave between two elastic media is studied, assuming
the constraints at contact surface to be elastic. It is observed that the
elastic constant of constraint between two media is always influenced
by the constant stresses.

I. INTRODUCTION

Kaliskil studied the existence of transverse waves between two elastic bodies
when there is an external impedence. Bluestien2, studied about the possibility of these

waves in piezo-electric bodies when there is a thin layer of concentrated mass between

two contact surfaces. Kaliski3, showed that these waves may occur 'when there are

elastic constraints at the contact surface between two homogeneous bodies. These

results are new in the theory of surface waves and may find application as a model
solution for other more complicated problems of the theory of surface waves in

piezo-semi conductors and amplification of such waves. Kaczkowski4, investigated the
influence of constant stresses on the velocities of propagation of elastic waves and
determined the magnitudes of the above stresses for which the state of equilibrium
of a body becomes a state of neutral equilibrium.

In this paper, an attempt has been made to study the influence of constant stresses
on the velocities of transverse waves between two elastic bodies, assuming the

con~trnint8 nt the contnct 8urfnce to he elRNtic. Tho cliffcrcllt rI1I1B~~ Ilf ~II1Rlil' ('CIIIRlfllillt
are obtained.
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2. BASIC EQUATIONS AND BOUNDARY CONDITIONS

Let the x-axis be taken along the direction of the propagation of the surface wave

and z-axis be directed towards the interior of the lower space. Stress-strain relations

are given by

(1)aij ;:;: ). ~t5ij + 2/1 ejj' (i,j = I, 2, 3)

where
e.. = ! (u. .+ u. .)
'J 2 '.J J.'

6 = ekk
(2)

The equations of motion are4

(J.,- .+ 0"1!. u'- ..(1 -<5:,-) (1 -<5.,-) = p 11,-
1&,1 1) &,1) 0& )A &

where a~k are constant stresses, independent of time, and satisfy the equation of static

equilibrium

0
ai k .= O

,1

Here& the static state of strain anJ displacementg pruduced due to the constant stresses
are not considered and thesc-. ; nstant stresses are assumed similar in both the

half-spaces.
We use the notations )., a. p, u, G for z > 0 and ).0' ao, Po' Jlo, Uo for z < 0.

For a transverse wave on t.b; :onta~l hetween two elastic bodies, the solution is

independent of y and the di:;p~,,~ement give:1 by

-u for z > 0
u =

2

, DO Z < 0.

Across the interlace the stress tensor must be continuous and the condition of contact

of resistances is

Shearing Stress = R X Slip (3]

for

I I

where R is the elastic constant of constraint (proportionality factor) between the two

bodies and slip is defined as the difference in the displacement of the material particles
on either side of the interface. Hence the boundary conditions at z = O are

G32 = (G32)O

G32 + R (u- uo) = O (4)

If the slip tends to zero (when R is infinetely large) the interface will be bonded and

when slip remains finite (when R is vanishingly small) the interface will be smooth.

This can be seen from Eqn. 3. Therefore, there is only one empirical parameter R,
to represent different degrees of bonding between the interfaces.
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3. SOLUTION ~ND THE DISPERSION EQUA TION

We assume the displacements

u = A ei(k.x- pl- mz) for z > O (5)

u =A d(k.x-pl+ifJz) forz<Oo o

in which k is the wave number, p is the frequency and a, p are complex constants

which are to be determined. Using Eqn. (7), the Eqn. (2) reduces to

(6)
,tl '\7~Uk + (). + ,tl) Uj.jk + a?j Uk,ij (I -Ojk) (I -°jk) :; p iik

Substituting the displacements (5) into Eqn. (6), we gel

JI[-~-~a2] -(1~1 ~ + 2(1~3 ~a -(1~3 ~a2 = -p r

.UU(-t1-t1p2) -(]~I t1- 2u~] t1p- Ug]t1p2 =- -Po ~

Solving the above equations for a and p, we obtain

~3

#

a= + -

p=
~~-

Po
)

(1+ ~ ).tlo

where b= 'fjijp and bo = 'Iiiliio are the transverse wave speeds in two half-spaces.

As the surface wave decays as depth increases, we take the negative sign before
the term under square root. Also the term under square root should be positive for

the validity of the solution. Accordingly we have to assume the signs of the constant

stress distribution.

Substituting Eqn. (5) into Eqn. (4), we get the dispersion equation

(7)

,~
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where
Rn = R/p';.k, n = IJ2/~, nl = p/po

As this equation is not suitable to interpret the results, we discuss this in a

particular case.

4. PARTICULAR SOLUTION

The solution (7) will be discussed in the particularly simple case n = 1 and

nl = 1 i.e. , in two similar half-spaces and 0'?3 = 0. With this particular case a will be

equal to p and the Eqn. (7) becomes

r- .+1=0

~

c;-=J[ 1+~ -4R~(I+ ~ )1
(8'

where ~ = clb.

From the Eqn. (8), it is clear that the transverse waves will occur (Real solution fol

~) if Ro satisfies the condition

(9

The general frequency Eqn. (7) gives us, a similar but more complicated set of conditio
for Ro' If the constant stresses qlfl' a~3 vanish, the condition (9) tallies with the simil~

condition obtained in section (3).

If a~3 --J.l, the Eqn. (8) gives,

(1~

Here f. is independent of Ro i.e. , Ro does not influence the velocity propagatioJ
Therefore the constant stresses of this order will nullify the effect of elastic constrain

between the two elastic bodies. ,

If ~3 = dll, the Eqn. (8) reduces to l

(1

Substituting the value of a in the above equation, we get
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Case 1 : If the stress (J~l is tensile, then the wave exists for Ro < 1/2.

Case 2 : If the stress a'fl is compressive and (J~l < -Jl, then the waves will exist for

Ro > 1/2.

Therefore, unlike the condition of existence of waves (Ro < 1/2) in section (3),
the wider range of elastic constant of constraint (Ro > 1/2) is obtaincd when the

constant stresses are compressive.

Now, using the Eqn. (11) the relation ~ (quantity representing the velocity) and

Ro (elastic constant of constraint) is shown in Fig. 1. Front this figure, it can be said
that, for an increase in the elastic constant of constraint the velocity decreases when

the constant stresses of order 10}J. (tensile) and increases~hen the constant stresses

of order -10 .u (compressive). So the different-orders of constant stresses restrict the

nature of phase velocity as well as the ranges of elastic constant of constraints.

Figure Velocity vs elastic constraint
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