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ABSTRACT

The influence of constant stresses on velocities of propagation of
transverse surface wave between two elastic media is studied, assuming
the constraints at contact surface to be elastic. It is observed that the
elastic constant of constraint between two media is always influenced
by the constant stresses.

1. INTRODUCTION

Kaliski' studied the existence of transverse waves between two elastic bodies
when there is an external impedence. Bluestien?, studied about the possibility of these
waves in piezo-electric bodies when there is a thin layer of concentrated mass between
two contact surfaces. Kaliski®, showed that these waves may occur when there are
elastic constraints at the contact surface between two homogeneous bodies. These
results are new in the theory of surface waves and may find application as a model
solution for other more complicated problems of the theory of surface waves in
piezo-semi conductors and amplification of such waves. Kaczkowski®, investigated the
influence of constant stresses on the velocities of propagation of elastic waves and
determined the magnitudes of the above stresses for which the state of equilibrium
of a body becomes a state of neutral equilibrium.

In this paper, an attempt has been made to study the influence of constant stresses
on the velocities of transverse waves between two elastic bodies, assuming the
constraints at the contact surface to be clastic. The different ranges of clastic constraint
are obtained.
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2. BASIC EQUATIONS AND BOUNDARY CONDITIONS

Let the x-axis be taken along the direction of the propagation of the surface wave
and z-axis be directed towards the interior of the lower space. Stress-strain relations
are given by

o = A Aéij +2u €;» (i,j =1,2,3) 1)
where

2

The equations of motion are*

Ot 01.')] U ij 1-4,) (- ‘sjk) = p U,

where 6%, are constant stresses, independent of time, and satisfy the equation of static
equilibrium
0

Oiki = 0

Here, the static state of strain and displacements produced due to the constant stresses
are not considered and these :.nstant stresses are assumed similar in both the
half-spaces. ' '

We use the notations A, . p, u, t for z > 0 and A, g,, p,, #4,, U, for z < 0.

For a transverse wave on tt2 contact hetween two elastic bodies, the solution is
independent of y and the displacement given by

u for z>0

" =

Sy, for z<0.

Across the interface the stress tensor must be continuous and the condition of contact
of resistance® is

Shearing Stress = R X Slip )

where R is the elastic constant of constraint (proportionality factor) between the two ‘
bodies and slip is defined as the difference in the displacement of the material particles
on either side of the interface. Hence the boundary conditions at z = 0 are

a3 = (032)o

o5, + R(u-u) =0 @)
If the slip tends to zero (when R is infinetely large) the interface will be bonded and
when slip remains finite (when R is vanishingly small) the interface will be smooth.

This can be seen from Eqn. 3. Therefore, there is only one empirical parameter R,
to represent different degrees of bonding between the interfaces.
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3. SOLUTION AND THE DISPERSION EQUATION

We assume the displacements
u = A eiltx- pt~ ln3) forz>0 )
uy= A ex-r+r B3 g0, <0

in which k is the wave number, p is the frequency and a, § are complex constants
which are to be determined. Using Eqn. (7), the Eqn. (2) reduces to

w V% + (A + ) u,, + af.’j u; (1-46,) Q- 03) = p iy, (6)
Substituting the displacements (5) into Eqn. (6), we gel

H-K-Ka?] - &%, K2 + 200, Ka-0f B> =-p P

HI-K-RE] %, K - 20% BB - 0 = _ p 7

Solving the above equations for ¢ and B, we obtain

b2 4 0
ﬂ = ) 33 *+ -
a_o Hy
(10 22
Ho

where b= Vu/p and b, = Vu/p, are the transverse wave speeds in two half-spaces.

As the surface wave decays as depth increases, we take the negative sign before
the term under square root. Also the term under square root should be positive for
the validity of the solution. Accordingly we have to assume the signs of the constant
stress distribution.

Substituting Eqn. (5) into Eqn. (4), we get the dispersion equation

™
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where
R, = Ripb?k, n = VI, n, = plp,

As this equation is not suitable to interpret the results, we discuss this in a
particular case. :

4. PARTICULAR SOLUTION

The solution (7) will be discussed in the particularly simple case n = 1 and
n, = 1i.e., in two similar half-spaces and o, = 0. With this particular case a will be
equal to f and the Eqn. (7) becomes

“R),+1=0

Substituting the value of a in the above equation, we get

&= \/[1+—-4R2(1+ 133—)] @

where & = ¢/b.

From the Eqn. (8), it is clear that the transverse waves will occur (Real solution foi
&) if R, satisfies the condition

o

D=

The general frequency Eqn. (7) gives us, a similar but more complicated set of conditio
for R,. If the constant stresses o3,, 03 vanish, the condition (9) tallies with the simile
condition obtained in section (3).

If 69, — — u, the Eqn. (8) gives,

0
i

J7

ag
E=1\1+

(u

Here ¢ is independent of R, i.e., R, does not influence the velocity propagatlor
Therefore the constant stresses of this order will nullify the effect of elastic constrain
between the two elastic bodies. '

If 6§, = of,, the Eqn. (8) reduces to \

§~\/[(1+ fgi-)(lfmg)] "
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Case 1 : If the stress o3, is tensile, then the wave exists for R < 1/2.

Case 2 : If the stress o}, is compressive and o}, < — u, then the waves will exist for
R, > 172.

Therefore, unlike the condition of existence of waves (R, < 1/2) in section (3),
the wider range of elastic constant of constraint (R, > 1/2) is obtaincd when the
constant stresses are compressive.

Now, using the Eqn. (11) the relation £ (quantity representing the velocity) and
R, (elastic constant of constraint) is shown in Fig. 1. From this figure, it can be said
that, for an increase in the elastic constant of constraint the velocity decreases when
the constant stresses of order 10 u (tensile) and increases when the constant stresses
of order ~10 u (compressive). So the different orders of constant stresses restrict the
nature of phase velocity as well as the ranges of elastic constant of constraints.
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Figure Velocity vs elastic constraint
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