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ABSTRACT

Generatiori of high pressure and temperature has various
applications in defence. Several techniques, viz flying plate method,
collapsing of linear, convergence of detonation waves in solid
explosives, have been established in this connection. In the present
paper, converging detonation waves in solid explosives, where variable
heat of detonation is being added to the front, is studied, by using
Whitham’s characteristics rule. Results are compared with those
reported elsewhere.

1. INTRODUCTION

Study of converging detonation waves in solid explosives is of immense importance
due to its applications in the generation of high pressure and temperatures. This
problem is studied by various authors, using polytropic equation of state'> (Ref 2 to
be referred as paper I). Using solidstate equation of state’” the above problem has
been studied® and thus variation of pressure and temperature were evaluated during
convergence. In these studies'® it was assumed that heat of detonation per unit mass
Q remains constant during the process of convergence.

It is argued’ that imploding detonation wave may be partially or wholly driven
by heat released from mechanisms other than chemical reactions. Other mechanisms
for the release of heat in a gas such as radiation, conduction and ohmic heating are
possible and have the property that the heat released per unit mass is not necessarily
constant but is. in general, a function of area of convergence.
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In this paper it is assumed that heat released in chemical reaction depends on
the current detonation velocity. Equations of earlier work (Ref 6, here after to be
referred as paper II) are modified. It is seen that in the present case increase in
radiation pressure and temperature is much higher as compared to that of paper II,
where as, there is not much change in total pressure for most of the explosives. No
experimental data is available for comparison, only theoretical results are reported.

2. FORMULATION OF PROBLEM

It was assumed in paper II that Q released behind the detonation front remains
constant and its value is same as that at C-J plane. But in actual practice it is observed’
that heat of formation of an explosive depends on various factors such as radiation,
conduction and ohmic heating other than chemical reactions. It is also seen that
temperature and pressure of explosive increases due to shock compression during
convergence and heat released in chemical reaction is a function of temperature and
pressure® of the products. If the explosive is already at much higher pressure and
temperature due to shock compression, the composition of its reactants may change.
Also since internal energy of products is higher at higher temperatures, the heat of
detonation in this case will be different than that in normal situation. In the present
paper we have not gone for all the above factor individually but as a totality of these
effects it is assumed that heat of detonation per unit mass Qis variable and is function
of current parameter y and U and not of y and D as in paper II. (See Appendix).

Jump conditions in the present case are same as in paper II except in the present
case, :

n+(1+I') y] Iy (I+y) 8. 1)
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where all the symbols in the present paper are same as that in II. Solving Eqns. (1)
to (3) and (5) to (8) of paper II with the help of Eqn. (1) above, we get two types of
solutions given as :
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where C'is the sound velocity behind detonation front .

(n+1) p
where subscript C-J indicates value of parameters in C-J plane.
It can be shown that jump conditions (6 to 8) give non-overdriven detonations
and hence are ignored. Therefore we will take case I only as jump conditions.

In feldtions (2 to 5) when y=0 one gets jump condmons for the case when
equation of state is in the polytropic form i.e.
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In the case non-overdriven detonation. we have z=1 thus we have
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We will deal all these cases in the following section for five different CHON explosives
and compare the results with those of paper I and II.

3. CONVERGENCE OF DETONATION WAVES

Follawing paper II, we use the equation of motion along the positive characteristics
axis as an extra relation relating detonation parameters. The characteristic form of
the equation of motion is
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2pctu dR
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where R is the distance of detonation wave from the centre.
Substituting p, p, ¢ and u from (3 to 5) and (10) in above relation, one gets after
simplifications
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From equation of state

p=S(1+y)p"
and jump conditions (2 to 5), one gets after differentiation
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solving Eqns. (19) and (22) for dy/dR and dz/dr, one gets
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Equations (25) and (26) are differential equations giving variation of y and z as a
function of R. Once y and z are known other functions can be evaluated from jump
conditions.

4. DISCUSSION

Equations (25) and (26) are integrated by using Runge-Kutta method of fourth
order and results are shown in Figs. 1 to 6. In Fig. 4, it is seen that in the present
case y increases continuously while in the case of paper II, y first decreased and then
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Figure 1. Varation of p/p versus R/R, during convergence in TNT.
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Figure 2. Variation of U/D versus R/R, during convergence in TNT.
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Figure 3. Variation of Q/Oq. versus R/R in TNT.
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Figure 4. Variation of Y'Y versus R/R_in TNT.



Converging Detonation Waves 389

5 -
O SINGH, 15
@ PRESENT CASE
o ¥~
g
-
‘-4
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Figure 6. Variation of O Oq. versus T/'T in TNT.

increased, rate of increase of y in the present case is much higher than that of paper
II (Table 1). Pressure in the present case is higher in the beginning but becomes lower
after some distance in the case of a few explosives, say, TNT and Tetryl (Table 2).
This phenomena is really surprising, as quantity of heat Q continuously increases with
convergence (Fig. 3). Effect of Q in this case is mainly on the variation of y i.e. on
radiation pressure, which is more in the present case as compared to the earlier case.
This radiation pressure is responsible for the increase of temperature in the present
case.
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In the present paper, we have taken Q to be function of yand U, and thus Qis
continuously increasing function of U. It is known that chemical reaction depends on
temperature and pressure of the reactants and also internal energy of productsincreases
with the temperature. Since the explosive is already at higher temperature and pressure
because of shock compression, the total heat liberated by it will obviously be higher.

In the present work, we have not tried to evaluate Q at different temperatures,

but as a totality of these factors, it was assumed that Qis a function of current variables
y and U instead of C-J parameters y and D.

In Fig. 6, we have plotted Q/ch versus T/T;j for the case of TNT. It is seen Q/Qq.
increases linearly with T/T;j. InFigs 1,4 and 5, p/pq_, ¥ Y. and T/ch are plotted versus
R/R for typical explosive TNT, for the present case and results are compared with
those reported elsewhere. It is seen (Fig 2) that U/D is higher in the present case as
compared to that of paper II where as increase in y/yq. is much higher in the present
case (Fig. 4). From Fig. 5, it is seen that increase in the temperature is also much
higher than that of earlier case. Variation of y, z and T'is shown in Table 1,2and 3

respectively for various explosives.

In Fig. 1, we have plotted P/ch versus R/R , for the two cases y=0 and y+0.
Results are compared with that of paper II. It is seen that in the present case, p/pq.
is higher in the beginning, but becomes little lower near the centre in a few cases,
say, TNT and Tetryl.

5. CONCLUSION

It is concluded that the rate of increase of pressure with respect to distance is
not as high as that of temperature or in other words the thermal pressure. Thus near
the centre, contribution of pressure towards the thermal part is much more than that
towards the elastic part.
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