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'ABSTRACT - E
The non-uniform rotation of a non-Newtonian, i incom- -
pressible liquid contained between two co-axial cylinders
of infinite length is considered, Initially, the outer cylinder
is rotatmg with constant angular velocity, When the inner
cylinder is at rest, the liquid is supposed to be in steady
motion but, Wh.en‘ it.is given an impulsive twist, it also
‘begins to rotate with a constant angular velocity and the
motion of the liquid becomes unsteady, The various states
of motion of the liquid are dlscussed : : oo
Totroduction
D. D. Mallick! has discussed the non-uniform rotation of a homo-
geneous, incompressible, viscous liquid extending to infinity in the presence
of an infinitely long circular cylinder rotating with constant angular velocity
about its axis. The inner cylinder is initially fixed and the outer rotating with
constant angular velocity. - When the steady state is attained the inner cylinder
is given an impulsive twist, the angular velocity of the outer remaining unalter-
ed. In our case it is found that of the flow invariants K,, K,, K, (Rivlin?
K,=0, Kz=0 so that the coefficients & and + of shear. and_ Cross
viscosity respectlvely are functions of K,. The coefficient of cross-viscosity
4r occurs only in the expression for the pressure and consequently presents
no difficulty. The coefficient-of shear viscosity & appears in the equation for
determining the velocity and necessitates an assumption as to its value for the
determination of the velocity. We have assumed @ to be equal to~ pn
where p is a constant both when the motion is steady and when it is not, as
is the case after the impulsive twist has been given to the inner cylinder. The
assumption in the unsteady case when K, being a function of r alone is a
function of both r and the time ¢ is justified in view of the fact that the invari-
ance of K, is with respect to a transformation of the axes of reference, so that
even when K, is a function of @ and ¢, the basic stress strain velocity rela-
tions for a non-Newtonian liquid remain valid. Equations of motion are set
up by taking ® = prm . These equations are then integrated to give us
the solution of the problem for a particular case when n=2. It can be éasily
seen that Mallick’s problem forms a particular case of the present problem.
The frictional couples on the two cyhnders per unit of their lengths have.been
calculated. , i
Formulation of the problem . - %
An incompressible non-Newtoma,n liquid is contained between two
-coaxial circular cylinders of radii @ and b(a << b). The axis of z lies along the
common axis of the cylinders. The:cylinders are of infinite length. Initially
the outer cylinder is rotating with ‘a constant angular velocity @, and the
inner is at rest so that the liquid can be supposed. to be in a steady state of
motion. Now an impulsive twist is given to the inner cylinder puch that it
also begins to rotate with a constant angular veloclty 0,, and the motlé)n of the

llquld becomes unsteady ' , v i
: 228 , i
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The mcompresé‘able n&-Newtoman liquid camldered"?here -is _that for
which the stress * tensor St 0 is rela.ted to t‘he rate ‘of strain tensor

e;k[ = — ( T il ) irx cmpesmze by |

it ——2@6”‘7—'—2‘\(1‘8’;} ej]c-—ps ST
L .. ;@1
ej =0 ] B . .
with the usual summation conventiom @ R
The equa.tmn of ‘otion is ST
8 7 atok - - - -
A u — = X + T s . 2"_
( T &%k T o : ( 2)

where X1 is the extraneous force and ¢ the densfcy of the hq]ﬁdfO

If vy, vy, vz are the velomty components in=the directions: 6% 7, 9, and z,
then for two dimensional motion v, is zero. Also because of symmetry we
may assume vr-and vy to be- 1ndependent of 6. -

Writing w,=u, uy==v, us——w and =, wz—y, wa_z and applymg the
transformations

— =co08,0 i __ﬁS_IE-_Qi ) . @
o o ro90. - -
® . o cos g &
_— 0 — —_— .
2y - ér + r . 80. .
2 _ o - ~
az 22
and S u =y cosﬁ—.'vo sin 0
v =v sin O 4 wvecos O
w =0z
 inthe equation of continuity, @ehave - - - O T
a : &5
— = 0. . .
o7 (ror) 4 ‘ o @ 3)

On integration, (2-3) gives 7er = constant,but vy = 0 at r—=q and ;h?é‘ce br
must be zero everywhere ‘ . -

Equa.tmn (2 2) ‘gives Do :
9%y '_1. a” - 9% . %
So (% L ) e . m)
2 oK) w2 |-
d ﬂ*:._._._.____ ) 2% __ "B ) ‘
md ¢ s | ( ,,,);J\

_the extraneous forces being assumed to be a.bsent We replace ¢y by Q@ for
convenience. We thus have ' s :

o0 g0’ | 1 a0 %@ 1.2\ A
e (G  —8) (17)"“”“’
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and p %2_=_—_§8r {1}:-( ~—)} (25)

- © and ¢ arefunctionsof K, K,, and K, In the present case we find that
: 2
Kl—-K—OandKls——-( (_2) ’

arr. 7

Initially when the inner cylinder is at rest and the liquid is rota,tmg in &
steady state, from (2-4) we have

2 P
) 39+189 () +a® o0 9)_

or2 r or 2 or r =0 7(2‘6)

with the boundary conditions :

0=0 at r=a)) . | .
LR 2 .0 ‘.' ) .. (2'7)
0 =bn,at r=2>5 T

Integrating (2-6) by takmg © = ™ and making use of the 'boundary
conditions (2-7), we have

n4 2 }
a_ 0 0 o "t?
g=->_% {1

nt+2 449 w42

b —a - r J

This agrees with Rivlin’s result for low between roté,fing inﬁ_hite cylinders
when © is given our value (Rivlin3).

Again, when an impulsive twist has been given to the inner cyhnder and it
begins to rotate with a constant angular velocity @, the equation of motion

(2-4) with this value of @ becomes

p 0@ _ , 0% -1 20 -2
o =" e el el e (2-8)

and the boundary conditions now are

8=0 ‘ at r=a for t=0 b

0=a8 , at r=a Afor t>0

a=>00, at r=5b  for t>0 . r (2+9)
btz o, ar+2

Q= -b"+2'—a”2+2 r(l—— g )forangra.tt—OJ

‘Applying Laplace transform 7 .
Qs —st 3 IS TR ot
'y (7, s)—f e o(n tydt - ‘ S R

L]



 DEFENCE SCIENCE JOURNAL -~~~ . ‘ 231

in (2-8), we have - CaEE T - - I
42 6 d 5 . "
mege t®+] _rnff T T {(n + 1)_r”ﬂ~.‘2_:§-, s/y}ﬁgm N

1. o+ 2 9 - ) L ognt 2 - "~'."' )

We have made use of boundary conditions (2-9) in obtaining the equation
(2-10). - In equation (2-10) v = p/p~may be compared with kinematic

- coefficient of viscosity when n=0. For.n = 0 the equation reduces to Mallick’s
equation. T . "

“Solution of the problem

In what follows we discuss a particular solution of equation (2-10) when
n=2. : S .

Equation (2-10) now becomes

e 4 ' s\= 1 b@, .
2 =7 + — . - —_ —_ . %2 T
" T 3 dar '(3 + v)n Ty (a0 rxXo

(1._-5:;-) L L me (31)

Solving equation (3-1) for @, we get

— 0,6 £b\3 at—pt 1 ¢ i ea AR
,9=“%*(T)m'+7(01r‘/4+8v/" |
' +02r;‘/4+’8/'f ) e . (3-2)

Making use of the bourdary conditions (2-9) we find

0, = o

! 8(“2«/4+s/v ___52\/4_—1-78/\)) A
and ‘ S :
le'az.b2\/4+-s/v a\/4"~£— sfv

_Cz= ' s(bz‘/m_f@)" :

Substituting the values of C, and C, in (3-2), we get

= Qb b\ at—r  ga .

rs
_ " sinh { @+ s/v)% log (r/b) } ;
S - S A smh{(éi-—!— s/u)% log (a/b)} _

(3:3)



282 NON-UNIFORM Mmomamé& Nommwmmﬁ LIQUID

The value of @ is obtained by 1nvert1ng the Laplace trénsfnrm, -which

glves o o | n
- sz (—“)3 11,4—”1)4 -  0‘;@2 a:m -X | N ;
.<c+wo' L X o |
‘ j st sinh {(4 + s/v)% log (r/b) } | o
] e . (34
c—io sinh {(4 + s V) log (a/b)} ‘

1

" 'We now evaluate the integral appeanng in (3 4)

For this we make use of Jordan’s Lemma?, which - states that if f s)
s analytm and converges umformly to zero as s mcpqa,ses mdeﬁm;hely, then
fort >0 IR + I

where R is the ra.d.ms of the semlcu'cle Whlchforms the contour of integration,
The function .- o ; e

sinh {(4 + s/y) log (r/b) }
smk {(4 + s[v) ‘ log (a/b)} g

b>r>dl :

satisfies the conditions of Jordan’s Lemma. We take oyr contour to be an
infinite semlclrcle bounded by the straight lme @=c, which runs from o to

+ oo,
’ Integrating along tlu's contoin","

)

1 f »eSt sznk {(4 + s/u) b log (r/b) }

2m
’ sinh {(4 ot log (a/b)}

¢— 400

: . 1 / eSt S’Lﬂh{4+s/\’)% 109(7/6)} ﬁ - A
i smh{(‘.t-{-slv)% log (“/b)}

. = Sum of the residues at the poles inside
 the contour,

Loa,
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But by J ordan’é Lemma - : ST e
‘ smﬁ{(4 + s/v) % log (r/b) ; B
Mé;z_ = % as
. smk {(4: +. S/v) log (a/b) } B
S = 0.
Thus we have _ -t
o ¢+ ioo ' 5.
' 1 f eSt sinh {(4 + s/v) log (r/b) }
i L sink {(4 + syt g (a/b)}
¢ — 400 . ~
" Sum of the mesidugs at the poles ins; de
7 . the contour,, namely a,t
- mzn"’v
g o =0 —tv— log?afb
: m(=1,2,3, ....)
or . 2
. c+'&0:8l sin 7&{ 4+ s/v) log\ (r/b) 1
[

c‘__;w o ° smh{ (4+s/v) log(a/b)}

2 bt g — — 1)m ;
=ir2_ b 7‘4 +___ 4vt2 ( %2??32 oL .s'm’(ﬁ- log r/b )

m—l

where B=— log a/b

{

Subst1tutmg the value of the 1ntegral in (3 4;), o
3at—nt 4 80 [ Bt 2 — atv
ﬂa—bﬂs( ) r K b —a4 +~— € X
4 e e
me TBE
2 :nz{-l" B2 ‘ : s@n( = log r/b )}
8at— wﬁ a2 B 9
= bﬂ’( ) { é""-ar_.;?e ><

4m vt

LTS D .B’;«e x
’ 2 m;a=+ B {J}b "y @)} ‘3 5)

m--'l"

fea
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Frlctnonal couples

In this section we find the fnctlonal couples on. t‘he two cyhnders per units
of their lengths.

If F, and F, denote the fricbional couples at the inner and outer cyhnder
per unit of their lengths, we have

F, = j'(trg)r —a azde o

‘Substituting the va,lug of t.y and integratiﬁg,’we get

© _ +4)tv
11 8 b (31"— Qz) + Q1 i m2e
) = 8rpat X Br mt+ B2
: m=1 ‘ - . ,
e (1)
Further —— :
- 2 ‘ I
F,= f (), — 5 b S
or _
. a*{( @y — Q) ’ ‘
Fz = 8pr4 {—(T“leb“—z + . - -
0, @ (—lrme VB ) T
Bx 2/ m2 4+ B2 - N S
m=1_ : - L
Kol ( )

When ¢ —>c0 we. find that the motion again becomes stea.dy and
the valie of the velocity at that time is

1_3 szzb(——)3 o “"4 + B0 ( )3 B .(4.3),

The values of F, and F2 as 't =0 are> - A\‘ L ﬁ |
7 = Bruathy( @, — 9,)- | ‘
=
© =00 at — bt . - .- I
e e . (4-4)
o= 87:,4.0&464(01—— a,) | e
2 =
0 — b
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-Presgure at any point of the liquid
Integrating equation (2+5),

02
p=9f—df+%{~lf —*)}%—M
where M is the constant. of mtegra.tlon

An Identity
The last boundary condition in (2- 9) when n=2is

3 b
n=02b (—). "4—__—'54—

_Comparing this value of Q Wlth the value of Q obtamed in (3-5) at t = 0 .
we. have the 1dent1ty ' . ’

: P :
e bt— 2
5 —a/‘ =7 BT sm( B loga/r).

which is satisfied under the condition

log afr
0<n= W<2ﬂ:

‘We know that this is always true in our case.

Discussion
* The value of velocﬂ;y as glven in (3-5) is

4__ 4
——bﬂa( ) A +01“( ) __(:4

8, ¢ 9 —~4v<T me B 2m
ol Z———m2+ 7 Sin (T log afr ) .

m=1

This we may write as
@=I+4+7T
where I is the initial velocity, 4 is the part added to I when the steady state is
attained and T is the transient part of velocity, which is negative except for
~ very small values of »?. This transient part 7 gradually decreases with tlme ’
but for a given ¢ it oscillates with 7,
In particular if we take vt = +1, @ =1, b = 2, then T' is
' : o — 22-7272m? '
4267 log »

Te=—— m2+ 0176 3’”(""" “Tog2 )
m=1
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Tn this series the first term is the dominating term.

This gives \
; 1567 —22-7272 Tow X oo
, 426 e o deg e\ '
I'=——" Tomg *ir (" log2 )

This value of T increases with r as r increases from 1 to 4/9 and then it
 begins: to decrease as r increases from V92 to 2.

" From the above discussion one may see that for a fixed ¢, not yery small,
unsteadiness increases with r, takes a maximum value and ultimately dies out
as r approaches its maximum value.

" My thanks are due to Dr. Ram Ballabh for guidance in the prepatation of
this paper. : o
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