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‘ ABSTRACT
The differential equations of motion of vertically as-
cending rocket are integrated in closed form in terms of
Bessel functions. During burning the drag co-efficient
and acceleration due to gravity are assumed to be constant.
Four different cases of motion are treated utider different

assumptions regarding the law of mass-variations of the
rocket. ' '

Introduction

We consider in this paper some cases of the vertical ascent of a rocket
under different assumptions regarding the law of  m#ss-variation of the rocket.
During burning the drag-coefficient and the acceleration due to gravity
are assumed to be constant. In each of the cases considered it turhs out
that the equation of the motion can be integratéd in closéd form iii teims
of Bessel functions. The four cases considered here may be described as
follows :— '

Let M be the mass of the rocket at any time durfng the burning, v its
velocity (upwards) at that instant. Then the equéation of motion is

d'v__ M Ko - - 1) -

w TTwTYTar M
Here g is the acceleration due to gravity, K is the drag coefficient and ¢ is' the
exhaust velocity. Regarding M we consider two assumptions -

(4) M = constant = —a
(B) L]g- = constant = —a

In regard to ¢ we consider the two cases:
(1) ¢ = constant = ¢,

(2) e = e, + v . o
We thus get the following four cases for consideration
(1) Case A,, M = constant = — @
¢ = constant = —a¢,"
| (2) Case B, —]Jg = constant = — g

¢ = constant = ¢,
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(3) Case A,, M = constant = —a
€ =C,+ v

(4) Case By, -l% constant = — a
e=¢,+
Tt is shown that in each of these cases the equation of the motion may
be integrated in terms of Bessel functions so as to yield an explicit expression
for the velocity during the burning. The vertical distance travelled during
the burning is given by the integral of this expression and in any particular
case this integral may be evaluated by a simple numerical quadrature. After
the charge is all burnt the motion will be described by equation (1) with the
first term on the right omitted. This equation may be readily integrated
to obtain the maximum height reached. For the three of the cases mentioned
above we have also worked out a numerical example and calculated the all-
 burnt velocity as well as the maximum height reached. The results are ghown
in Table 1. .

Case A, : Since here M=—a
i & M :;.Mo,_,at
" where M, is the initial mass of the rocket, The equation of motion will be

b ao Kv®
dt _Mo—at—'g_2(M°——at
. v ¢ g - Kv®
e g =~ " t e T war
dv o ¢ - i .
Ol‘m="—f’[—ﬂ+ﬁ ‘e . oo - .o (2)
where
B=9gla
_ K
T %0 :
M du
Let v = — W‘ . m
Then equation (2) goes over into
R « | '
Mzm—g+Mm+q(ﬁM—c)@,=0‘.. (3)
If we write -
‘ c=2V ey M
then (3) becomes

d2u du | ' '
”’7;;27“+$7;§+(w@~—s’)=0. Rt O



DEFENCE SCIENCE JOURNAL ST 209
Where s¥=4dqoc
The solution of this is

u=4Jy (2vEYID + 0, 2V By

where %;, g 4re constants.

Then
- : M du
'v=_,___'m m
e quM 's @/ ByIDAAY 'y (2 /BYED)
T (24/EyM) 4 AYs (2 +/ByM)
Cwih A= L L L 0

The constant ) is determined by the Qondition v=0,t=0
Thﬁs

[ 38— 1(2\/3’)’M)"" 81 2\/3'\'3‘{)]
Y, 1(2\/5'7M)—~ 3412 VEy )

I

The veloclty when the charge is all burnt i is

\/f?vyM_[J8 (24 BoMz)+ AY's (24/BvM5 ) )]
Is (24/ B9 Mp)+ 1Y, (2// By M35)

vp = —

where Mp is the mass of the empty roeket, The vertlcal distance tra.vets-
ed up to the instant of all burnt” .

fv- dat =fv.% M
[} Mo

——-f v. dM | | (8)

After the cha.rge is all burnt the equa.tmn of motlon is -

dv dv ) K 2 o
‘Gow =Y o e O
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-

- whence the travel up to the maxmum height is glven by .

[ié«" |

3 _”B.vd’v Ms | '
ST e 8 Og(HW: L
~The total "‘heigh_t reached is then
) H=§1+‘2

. Case B, : Here I .
AM o, B

2 -

r o ——at
M= Me

The equatioﬁ of motion becomes
dt

dv -
——ac——g—-— y e 02

= 0.}'-5—.\76“‘ v? <o

where ~ w=oa63-g . L2
B
¥ =3,

—'——'Zﬁ oo s e ’ ; (12)

N R

Then the equatlon (11) reduces to
o w-——aw-—-m/e“‘u—o '
bstitute again '

v=yr R O s

z = 2 R

Then the new equation in y and = will be

2 R
dy L B d —(1+Azw2)y__o S
. . ‘ 4¢ =
where ‘ e Az;_;g
of which the solutlon is -

pmnaa
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Hence ; _ : B
o= [M I, (46™) + MK, ™" )] L)

and from (12) We have

V==

a e‘“t[ [ Ae"™) + NEy( 46" ) +4e™? [1'y(A “‘/2)+),7c',(A ""2)]]

ond -
v I, (de "2)+;\K1(Ae‘/2) .
(14)
where
A K
- x B XI v -~
“/- The constant is determined by the conditon v=o, t=0 ‘
"so that
- 1, ( y at/2) 1 de®Pr ( "4 at/2)
(Aeat/2)+A SR (A m/g) A
(15) -
' o e atB
. The’ veloclty at all burnt is given 'by va — ¥
f[Il 4é at/2 +7\K (Ae“t/?)]—i—A at[2[I, (Aeat/2)+m (A atl2)]
} I (Ae “/2) + 2K, (Ae @/2) ,
L ‘ ‘ t==tp

e e (18
The maximnm verfical distahce obteined as before is given by B
H "= 8y + 8y ‘ ‘

where t : N R

sl_f'vdt o

and s, is obtained by (10) with vg given by (16). .
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Case A : _ . .
Inthiscasewehave = R
: M=-—q
go that
M=M,—at
and ¢e=2¢6,+v
" Then the equation (1) becomes
dv acy av , Kv?
73-t=M°——at +M°—at —9 = 2(M —at)
or ;% = —"% — —]}%JF(BMM;_G&) . o
where B = gla ‘
' K
=%
Let v=u-+t <
Then the above equation goes over to
%:%uz_%m . i (8)
where B = g/a
K
=45

o =(ot )
The equatlon (18) is the same as equahon (2)-
Solution of this is

Vgl [ "o 24/ Byl) 2T, (2 \/W)
Y Ik @VEyM) + AYu 2/ByHD)
Where 2 = dy¢’ = 4ye, + 1 .
_ 1 AByM| V' @M+ \Y u(2/PyM)
2y 7 LIn (2VEyl)+ AV, (3Bl _
The VelOclty at all burnt is
o —_ 1 [2VEYM T @VBy) Y, (2\/ﬁ'YM)]*—[(Jﬂ 2va«M)
e 2’ /L (Wf»qM)HYﬂ (2\/er>

TV @V By M )]]

U = —

.o (19)

T M =M -
o )
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The maximum he:ght is obtamed as m the prevmus case, usmg the value
of vy gwen by (20) s o
 Case By :
"~ Herewe have M/M =—ua
and. € =20, + v

So that the equation of motion becomes -
d ' K ,
. _d_’l;_=a,(co + v —g — m v?

- where M =M _e - T

d . ) i . ; . R -
or —_d't?i = o 4 av.— e o2 .o o ee (2D
where « = .ac, —yg
I S

vY= oM, -
1 1 du : S ’
Put ‘l)=?; 7(‘1‘2 T e .o .o (22)
Then the above equation will become o B

% — 261 — aye® u =0 .. (28)
Let again

% = yx?

T = &atl2

. Then the equation (21) reduces to

@ .
? g te d:v 4+ %%y =0

4o : S
.wher,e42=—a¥ T

of which the solution is )
¥ =Nil, (40) + MK, (4a) .. . v e (25)

and hence

y at[)‘.lI (Ae at/z )+ MK, (Ae ot /2)]

F"’m ='—u-' ,r,eat- 'dt_t

o
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© we have

. £2 £/2 at/2 . i :
e Iz(Ae )+xK2(Ae )+ (I'z(Ae AR ))
v= — a2
7 | 12<Ae N ARy
(2)
Y
‘Where A = >
From v = o, at ¢t = o, we obtain
(A a£/2)+ o2 (A atf2 “‘ ‘
K (Aat/2)+A- atf2 ,(A atf2 }
t=o .. .. o (27)

The all burnt velocity is ~
et { Iz( A at/2) 1K ( 4 at/2) 44 ui[2( 46 at/2) +7«K'2( Aeat/2).]

Yp = —fy_- , I A atf2 7\.K A at/f
U (4 ) + 24 J

t=ip
(28)

The maximum height is calculated as in the preceding case, using the
value of v, given by (28).

o

Some numerical results:

To illustrate the above formulew, the followmg cases were calculated
~numenca11y

» : All bnrnﬁ .
Initial | Final Burning e v velgeity Miximum
mass | mass | time (ft/sec). - B | height H
i) | @) (seconds) 4 (fb/see) (ft)
. : ; ' -5 ey
Case A, 21 12 1-2 4550 [5'Bx 10 2180 12523
o -5 :
Case B, 21 12 1-2 6400 [2-183x 10 3532 17627
3 5 )
Cane A, 810 | 72-41b| 0:89 6400 ' [31-4x10 | - 1544 6743
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