AN EXACT ANALYTICAL SOLUTION OF THE EQUATIONS OF INTERNAL
BALLISTICS FOR THE PRESSURE-INDEX LAW OF BURNING
| o ) R
J. N. Kapur and B. 8. Jain
Delhi University, Delhi
ABSTRACT

In the present paper, an exact analytical solution of the
equations of internal ballistics, for the specific case of a
tubular charge has been given. This solution applies to some
particular values of the pressure-index a greater than unity,
and for these values, the function G (y, @) of Clemmow has
also been explicitly determined. ,

Introduction

The solution of the equations of internal ballistios for the pressure-index
law of burning was first discussed by Clemmow!. 2.3 for the case when the
pressure-index @ was necessarily less than unity. Later he * extended his theory
to the case when o could be greater than unity, as in the intervening period,
the search for propellants possessing less erosive and flash-producing qualities -
than those in service use led to the discovery, by a greatly-improved closed-
vessel technique, of propellants which burn according to pressure-laws for which
the index o exceeds unity and may be as high as 1-25. Clemmow, in this report,
confined himself to the isothermal model only and gave a series solution for
1< &< 3/2 and an exact solution for & = 3/2.

Recently Kapur® has given a number of alternative methods for solving
the equations of internal ballistics for the pressure-index law of burning, but in
the most general case, his methods, like Clemmows, depend on the solution
of non-linear differeritial equations, though his equations apply equally to the -
cases o less than or greater than unity. , :

In the present paper, an exact analytical solution has been obtained for the
non-isothermal model for particular values of the pressure-index o greater than
unity for the specific case of a tubular propellant. In particular, tables have been

given foru-———'é— , ~g and%. The basic differential equation has also been

integrated for the case @ = 1to give explicitly the equation of the pressure-
space curve for the case of finite shot-start pressure.
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For zero shot-start pressure, the expressmn for the maximum pressure has
been obtained and this enables us to tabulate the functlons G (y,a) of Clem-
mowtabulated earlier by him for y =1, @ < 147 for some values of &
greater than unity, '

The Basic Equations
Neglecting co-volume correction terms, the funda.mental equatlons are
(Clemmows, page 117}, -
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Where the dimensionless variables £0¢ correspondmg to shot-travel
velocity and pressure respectively, and the central ballistic parameter M are
given by
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For the specific case of a tubular propellant Kapur®, has deduced from
equations (1)—(4), the following differential equations:
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It ha,s also been proved tha.t .
o S e
6 . , dY R s 1

> (12)

For finite shot-start pressure, the internial conditions for the 1ntegrat10n of
{9) and (10) are: ‘
1
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Intégration of the Equations
- We integrate (10) subject to (13), Let £ = Zm , then (10) becomes
mYZZ" + ml(m — 1) + m(y — 1 — qaf}Y2"% + maZZ’
2 w20 2myd — 3mY + m 4 2

‘——MY L R .. .. (14
Now we choose m so that the coefficient of VA vamshes 1.6
1 .
o e =) (19)
then (14) becomes T
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The equation is atonce integrable if - ’ o
2 —1 ' ' :
a= £1 L . . an
In this case (16) becomes o . T
2—2 - ' ‘
Y2 + o = Moy(l— )Y * . .. (18)
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where the constants’4 and B are determined from (13) as )
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= B=—__"— _ ..
,‘1 + ( “)(3 2&) go > ’ (2 'v'-,“)z go (20)
~ Also from (11) and (19)
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From (12), (17), (19) and (21), ‘
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For maximum pressure —g% = 0 and (21) gives
» 1
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-»-[._(2 — (3 — 2«)] @9
and |
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s—1 4 3-—24 M1 —a)
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For given values of «, ¢ and M, (19), (21) a.nd (22) enable us to tabulate ¢, 2
and 2 as functions of ¥ and this tabulation is to be continued till z = 1,
when the shot-travel and the pressure at all-burnt will be determined.

Special Cases
The case o = 1
In this case m = o5 and the above solution fails if

y=1+ %—a.nd we substitute ¢ qu, Eqn(10) becomes

YZZ" — YZ" + 22— iq". Z=0 .. .. .. ()
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S ating, using the internal conditions .(26); we get after some sinipli=
ﬁcation ,3 e o

=%2Ka) mH+(¢) wpl .
where ' ‘o
=1+ 22'49, I .. (28)

(27) gives the explicit equation of the presure-space curve. It can also be
deduced from the results obtained by Kapur®.

~ The case & —‘—ﬂz—"’.’ ‘ ;.
, :

In this case also the above solution has to be modified.
(18) becomes

Y2Z”+%YZ'—~M B R
Integratmg and proceedmg as prevmusly ‘We get

_g‘l_c+m’ '~—-"'2MlogY e .o (30)
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TABLES FOR PARTICULAR VALUES OF o«

TABLE T-
I § -6 . ; =
O—Ts—,y—?,M—l,go_Ql.
Y 01 03 05 0-7 09 10 1-0976
2 0-1 0-297,40 0-486-62 0-666,94 0-83859 0:921,26 1-00,000
£ 1.0 11757 14866 1-89,84 2:4327 2:7566 3-11,69
¢ 01 024703 0-31071 0-324,37 0-309,70 0-206,17 0-280,53
TABLE It ]
o =6/5,¢=>5/4M=1,¢ =01
Y 0-1 0-3 05 0-7 0-9 1-0 1-1.1-1456

z 01 0-296,33 0°481-39 0-654,55 0-816,33 0-893,15 0-967-34 1-00000
¢ 1-0 1-2006 1-5570 2-0388 2-6813 3-0802 3-5434 3-7791
¢ 0-1 0-238,73 0-287,49 0-287,33 0-262,300-245,06 k0~226,26 0-217,42

TABLE il

@ =54, g =43, M =2,5, =01,

¥ 01 03 05 07 - 09

2 0-1 0-288,22 0-441,72 0-560,04 0:645,71
1-0 2:29,17 . 3-21551 : 7-63,25 23-14,46

¢ 0-1  0:099,204  0-105368  0-046,581  0-013,645
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Variation of Maximum Pressure
For zero shot-start pressure, (19), (21) and (22) become

1—a
N N T
4 =1 +‘ T a3 —29) Y =, Cee (36)
; =Y+ Ry e ¥ e (3
L M(l—-—a) 4—2 o
N R T 7 7 gy S i (38)
Also : - :
: 2M M 2 4-——2« Q
2 = — = -
= et )
go that
M 2—a
Ol =t o
The all-burnt position is given by
1-.-«) S 4Ty
gB2“—°‘ = (22 — 3) + 171; ® (40)
where Yp is given by S -
M1 —a) 4 —2a
Ut e ]
The maximtm pressure ocours when Y = Y where
‘ 1,
y 2¢—3
m [(2__0)(3__2“)] e (49)
go that :
3-——2& ¢—-—l ‘u—-—3 ‘1—3
¢ =(=) s—:éi.r (2_¢ - @)
Clemmows 3:4 formula is
1
¢ =Gy, o) M3 (44)-
. max
comparing and remembering (17),:we get
B _ (@—2) 5
: - @—1)(ca—3) - - S
1 (3 —20)

(2__ M) \ﬁ—l)(2¢—3) .
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‘ Y I
{rom where we get the following table:

TABLE IV |
. : ' R 6 5
L S 3 5 T
‘ ; 6 5 4
v 5 1 3
Gy, @) 0-367,83  0-108,55 0-069.83  0-027,78

Clemmows tables refer to T = 1 a.nd oc< 1.

For any given value of o to.get a smgle—-entry table, 31mllar to Clem-
mows? (page 233), we make the substitution

My’ ¥ g, L (46)

80 that (36), (37), (38) and (39) give o
2 —a
1—a T=+)

1—a '
g=[1+( m)2(3_2a)z] )
) 1 ! all |
3 —Za 3 e 1—a) . -
M ¢ =2 [1+2__m)2(3*2u) z] .. 49)
| 1 )
=, _ i (1— @)
M 2= [1+(2_~“)2(3_2m)(4_20)z] .. 49)
=) 1, (5=%)
— 2 —
M qz.mz .. .. .. (b0)

The R.H.8. of these equations depend on Z and « only. The results have

11T 10 9 8 6 5
for ¢ = —— o =
been tabulated for & = TR 2 A We reproduce the table

for & = 6 =5
TEEFYT
TABLE V

z - My ¢ Miy M3
0 0 10 0 0
1 -058,02 1-2386 -016,489 +020,84
-2 +146,20 1-5527 039,462 -063,95
3 +251,04 1-9731 057,492 121,31
4 368,40 2-5458 067,529 +188,88
5 +496,06 33422 069,701 -263,71
6 -632,57 4-4762 065,556 -343,46
7 776,92 61342 057,166 426,11
-8 -928,32 8-6366 046,565 -509,88
9 1-086,18 12-5546 035,500 -593,17
0

B Sy

&

1-250,00 18-9689 -025,261 674,48
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