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ABSTRACT

In this paper, the theory of recoilless high-low pressure:
guns has been discussed by taking the form function and
the results have been applied to the ‘case of hepta-tubular
powders. The results for high-low pressure guns follow as
a particular case.

Introduction . ‘ ;

The theory of leaking guns bas been studied by Corner 2. This theory
is applicable to worn orthodox guns, smooth bore mortars, recoilless guns and
high-low pressure guns. The form function for the propellant was taken by him
as z=(1—f)(1406f ). The system of equations obtained by him can be integrated
numerically only. He also gave a simple solution for the case of linear law of
burning. Thiruvenkatachar and Venkatesan3 discussed a method of successive
approximation to solve the equations for the leaking guns for the tubular pro-
pellant, 4.e. when 0 = O only. A simple theory of the internal ballistics  of
high-low pressure guns for tubular propellant (i.e. 6 = 0) was given by Corner®.
Aggarwal 56 has extended these Tesults for tubular propellants to the case
of charges, having the form function 2 =(1—f) (1-4-6f). Kapur’ has combined
the features of the two guns—high-low pressure guns and recoilless guns—
and has given a simple theory of a recoilless high-low pressure gun of the
same order of accuracy as Crow’s theory of orthodox guns and Corner’s theory
for high-low pressure guns. In his paper, Kapur has started by taking the form
_ funetion as z = ¢ (f) and has found out the conditions for maximum pressure
in the first chamber, and obtained some results for the particular cases of the
form funation, viz. z = (1—f) (14+6f) and 2z = (1—f)-

In the present paper, we have discussed the theory of recoilless high-low
pressure guns by taking the general form function z = ¢(y) for the propellants
and have applied the theory to the case of hepta-tubular powders, the use of
which is becoming more and more prominent now-a-daye. ‘

In the cae of hepta-tubular powders, there are two phases of combustion—
() before the rupture of the grains, when the form function takes the
general cubic form : ‘
| 2 = (1—y) (a—by—oy?).
‘and ; T :
(#4) after the rupture of the grains, when the form function of the pro-
pellants is a very complicated, function of y. .
59
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It is clear that if @ = 1, the point of rupture coincides with the point of
all-burnt, and therefore the first phase of combustion in the case of hepta-
tubular powders will correspond to the complete phase of burning for other
‘ordinary types of propellants viz., tubular, cylindrical (cord), slotted, square,
etc. Further if ¢ = o and b = — 6 the form function of the first pha.se of
combustion takes the general quadratic form

z = (1—y) (1+8y),
which includes, as a particular case, that of cylindrical propellants for which
the form-coefficient is6 = 1. When b = o, ¢ =0, (@ = 1), we get the form
funetion for the tubular propellants, Thus ths cubic form function for the
first phase of hepta-tubular powders includes the form function for all shapes
in general use.

Principal Notations and Assumptions

A recoilless high-low pressure - gun can be represented in form by the
following diagram— ‘

' : ‘ \./ It o
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The following principal notations have been used here:--
g1 = The effective mass of the projectile.
p = The fictitious mass of the prejectile,

. @
= py -+ 3

= Velocity of the projectile.

= Cross-section of the arm taking into consideration the rifling.
= Mean pressure in the first chamber.

== Mean pressure in the second chamber.

= Internal volume of the first chamber.

= Internal volume of the second chamber.

== Mean value of RT 4.e., force constant.

== Mass of the charge.

== Density of the charge.

= Fraction of the charge burnt at time ‘¢’.

N, = Fraction of the chaige remaining at time ‘¢’ in first chamber in the
gaseous state,

N, = Fraction of the charge remaining at time ‘t’ in second chamber in
" the gaseous state, »

Nops;"vsa_q*'ﬁ ;'Uq ]
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y = Fraction of the tluckness (web-sme) of the charge remammg 8t
. time ¢, ,
D' = Web-size.
A = Vivacity of the powder.

A’ = Linear velocity of the combusb:on of the powder under the unit
pressure.

n = Ratlo of the two spec1ﬁc heats of ¢ gases

n =1 + (n—1) (1-+k), where & is the ratio of heat losses up to time
‘' to the kinetic energy of the shot at that time and assumed
_constant.

’
ne

g ==
L—np

n = Covolume of the propellant gases.

¢’ = Density of the gases.

n + 1 . i T e
b (2 ) 0 10924 e 4 01042 40 (&)
Vo= | oy = 24 ¢ + ef o () .
| S, = Surface of the powder initially exposed to the combustion.
- 8 = Swface of the combustion at the instant ¢,

:p(z)— —S— = The Charbonnier’s' Form-Funetion of the progressmtv of
the powder . ) = »

@ = Shot travel at time ¢’

8,*= Area of the exit nozzle, v

Sz*—- Area of the middle nozzle, .
(G,,._ ‘_) SR

We have assumed that

pous
< (n+ 1) [1—0-248 ¢ + 0°117 ez o(e")], |
50 that the rate of flow is settled by ‘®’ alone—-— a famlhar result m the
‘one-dimensional theory of nozzles.
If P/p is greater than the above limit, we shall have to introduce a COTTeC~

tion in the equation of continuity given afterwards by ta.kmg a sultable ba,ck
pressure factor as explained by Cortier?,
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Basic Equations of Internal Ballisties

The basic equations for a recoilless high-low pressure gun for an iso-
thermal model can be written as :—

Equation of state for the first chamber :—

v 1 —
p[m..”is—zl_a.zvm]=azv,f S
Equation of state for the second chamber :—
p[d+ oz —dNynl=a N, f .. .. o (2)

Equation of continuity for the first chamber :—
dz le \U Sl *P + ‘l) Sz* P

*E T & v v 3)
Equation of continuity for the second chamber :—
. 4Ny _ W'8*P '
@ T T f )
Equation of Inertia :— -
dx dv dv
n _(-zt—z-—zy. e = o = ap .. L T e (5)
Equation of combustion :—
dz
v = APeq(z) . v .o (6)
The equation of combustion can also be written as :—
D-—&T-— g'P . .. .. .. e (M
and the (2, y ) form function in the form |
2=t N )
_ P __ P
Clearly 4 ¢ (2) = —¢' (y) -7 S 9
and for hepta-tubular powders, .
(a —b 0) gl » g . ‘
A == -———-—-F—""‘ .. .o ' .o . (gA)
~ Solution of the Equations
For the first chamber :—
From (3) and (6), we geb
dz le O dz X dz:
= + <P T e 'a‘t- .. e L e (10)
with : o
. . ’ S % . ’ . .
A = ._“’_—_L- T (Y
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W’ s, * ,
ﬁ VTA .o o ) .e ‘].OB)

Integrating (10) and putting the initial conditions
t=0,2=0,Ny=0,

A=

we get
z_()-‘-—A’)V:Nl .o . .o .o (11)
with a a '
z & | | E
V (z) == ? (z) ’ - ee ss / e . .s ll(A)

But for both phases of combustion of the hepta-tubular powders, we
have [Tavernier® or Gupta®]

ViE)=(a—b—c) (I—y)
SN=z—(A+N)(a—b—c)(1—y)
=g— (Y + V) (1—y9)

(11B)

(12)
with Cn ,
| Yy =r(a—b—c)
Yy =N (6—b—0) g
Clearly from (12A), (10A), (10B) a,nd (9A), we have
Y8 D

Y, = d’)\/_f— T oe e .o \/ .o (13)
WSt D
&
Algo from (4), (6), (114), (11B), and (13) we have on integration

= Yy(l—y) ' ' (14)

Here the qua,ntltles Y, and W, are the two dimensionless leakage
parameters,

Now from (1), we have

(124)

e

Yo =

=

P = dﬁﬂfrjf) : . (15)
[ C*“_”T:“—ﬁf\’ln] o
Therefore, with the help of (12) and (8), equation (15) becomes
P afEW—(¥:+ V¥ (1—9y)] (16)
e+ sﬂw~wmﬂW“Wﬁ”QWﬁU] |

_ Bf3EW— (% + Y (1—9)] "
=T -B{®+BI—y] - - 0
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with
"1_"_‘) i L,
B=—> 3¢ o = ’ Cee . (17A)
‘ 8 - - 4 .o . B v‘
= = S L L L arm
@
o — = |
3( 3 . |
Bz=B1b8’1(‘?1“+ \Pn);‘ _‘f_j;;(_gil_tcg_s)_ (170)
C* — =
S $

Differentiating (17) and on simpliﬁcation we get,

[1-—B§<w+B<1-—y>] (5 )

= By f3 [{é‘ ) + w1+\r} {I—BC y)+Bz(1-—y}

L]

+{B¢ @) +B) {tw—witvaa—n}] a9
Now for the hepta-tubular powders we ha,ve
0] 1mt1a11y when g = 0,y = 1, V=o g
EW =08 =t 1) =b+e—a
Equation (18) gives )

ap : | o
-(W)y=1f-=-31f8-[b+c-a+w1+ vl .

(i¢) at the point of rupture of the grains, when
5 = a, y=0,

EW=0a T y=—(a+b)
.\, Equation (18) gives -after simplification,
i

[1-—-Ba+B ] ’(ji‘y_o

~Bf3 (92 + Va—a=8 b {B, ——(wlwga B}] o)
(m) at the all-burnt posmon, we have v .
=L Y= g t,’(;y)fflf Cly)=0
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.. Equation (18) gives ( . ,
2/ 4P ‘

1—B B,(1~— min’]('——*-)
[ tB(1—ymn) | gy Y = Ymin
=B fs[(Vi+ V) (I —B)+ B, g0 (¥, + Yol

@ fC* = : -
_of —z [+ v - e @
() ' o

which is a positive quantity.

. dP . . . . :
Initially Ty is negative, since P increases and y decreases; we therefore,

have the condition, which holds good throughout the combustion as :—
btec—a+ WY+ V<o, .. T (21A)
: P ‘ ‘ ;
Again at all-burnt —Z—y— is positive, therefore the maximum pressure in the
first chamber should occur before the all-burnt position. Thus the maximum
pressure in the first chamber may oceur :— - ‘ C

(¢) before the rupture,

if %—5— is positive at rupture;

(«¢) at the rupture,

.. @GP .
if Ty is zero at rupture;

(#7) after the rupture,
. 4P . . . \
if Iy is still negative at rupture.

Tt can easily be seen from (18) that the expression’ on the right-hand
gide is an increasing function of ¥ as y decreases, so that it passes from
" negative to positive and once it becomes positive, it cannot be negative again.
Hence the uniqueness of maximum pressure is established,

Now the condition " that the maximum presstire in the first chamber
may occur before the rupture is o
4P ) >0
dy ymo

@)+ Ygma> b+ (¥ W BT
W+ Yo—a _ .
+ By (Y + Vy)

or 4b< 1 e (22)
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While the condition for the maximum pressure in the first chamber to occur
after or at the rupture is

. ‘4’1‘4‘ Y,—a
t.e. b> T B, (Y. F g .. (28)
and b Wit ¥, —a .. (234)

TITEB(V,+ 9
These conditions can easily be seen to cover the conditions which may be

obtained for propellants of other shapes also. Thus for constant burning
surfaces, viz., tubular, the (2, ) relation is -

z2 = 1l=—y, .. .. . .. .o (24)

so that we should have ¢ = 1, =0, ¢ = 0, and the point of rupture as the
point of all-burnt.

Thus in this case at all-burnt ( %—5—) has the same sign ag
Y=o

Y, + W, — 1, which is negative from the condition (214).

*, in this case the maximum pressure in the ﬁrst chamber would occur at
all-burnt position.

For the cord having the (2, y) relation as ,
= (1—y) (A4+y), .. .. .. .. (25)‘

we have @ = 1, b = —1, ¢ = 0 and the point of rupture coincides with the
point of all-burnt.

In this case (—‘?—I—i) has the same sign a3
ay Jy=o

1+ Yot By — (Y, + ¥, B,

G

Therefore in this case the maximum pressure in the first chamber would
always occur before the all-burnt position.

i.e. as that of 5,———=— C* which is always positive.

For the sphere having the (z, y) relation as

2=1—13
=(1—-y A+y+s» .. .. .. (26)

we have g = 1, b = —1, ¢ = —1 and the point of rupture as the point of all-
burnt. ,

" In this case also( d—li—) * - has the same-sign as -
y=o .
\yl + \yz + B2_ (\yl + \y2)‘B

whxch is also always positive as in the last case.
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Therefore in this case also the maximum pressure occurs before the all-
burnt position.

Taking the case of hepta-tubular powders both the conditions (22) and
(23) may be satisfied. .

(z) When the condition (22) is satisfied, the maximum pressure in the
first chamber would occur before the rupture of the grains and at that moment

as %: 0, we should have from (18) after simplification,

g () [+ (Y2 + W) (1 —g) B+ (V5 + 90 {1+ B g (9) }=0. @7)
But before the rupture, we have (Tavernier &) ' .

¢ (y) = (1 —y) (@ — by — oy? :

¢ () =—[a+b—20b—0c)y—3oy]

and also
a+b
=0 "b—¢
2 (b —¢)
ﬁza——b——-c
3¢
TS a—b—c’

.'. equation (27) becomes after simplification

‘F1(y)=—54("y1+ Wy) By 4?

- [6}’{1 + B, ("1t ‘yz)} — 3B, B (Y, + ‘!}2)] Y
— 6B+ By (Ya+ Wally

[rem 00 frs sy a0} oo

The equation (28) will give a root between 0 and 1, say ¥m which
determines the value of yat which the maximum pressure occurs in the
first chamber before the rupture of the grains.

In that case the maximum pressure P in the ﬁrst cham‘ber is
given by (17), as .
P, = B, f38 (1 —ynm) [a—"me'—oil/m"‘%—‘Lz]
" A= (1—ym) {Bla—byn—oy’n) — Bi}]
(¥5) But if the condition (23A)
b= Y+ dp—a ) p ¢
1+ By ($1 + %2

is satisfied, the maximum pressure would occur at rupture and in that case
maximum pressure, say Py, is given by ‘

_ B fd[a—41— o] - ‘-
P,,.,‘— T—Ba+ B . .. . .. (30)

(29)
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() Again when the condition (23)

G+ §—a
b - -
> + B, (Y, +&) ,
is satisfied, the maximum pressure would occur after rupture of the grains.
Sinced—y = 0 at the point of maximum pressure, the equation (27)

becomes with the help of standard results for hepta-tubular powders
[ Tavernier® ]

3 (m+4-1) (m——~3 ‘ m + 1 , c0s® @
Rapm (mP—7 7)1(4 R v )H(m) — ——(m+1)H(w)}

X [1 + By (4, + %){ 1“' a + (1—sec o) }]

12
+<¢1+¢2[1+B{ Sﬁmj - o
m - 1
(1+ , MPGOM) (w)]- . (31

Thus corresponding to any hepta tubular powder (i.e. with the values
of m and p given) and with the necessary gun and propellant data, this
equation when solved would give  the value on of © for whlch the
pressure would be maximum.

Then the maximum pressure in the ﬁrst chamber will be given by (17),
after changing ¢ (y) and y in terms of .

Again at all-burnt, we have

z=¢(y =1, Y = Ymin .
.".the pressure Pp at the all-burnt position is given as

By s 11— (Y14 Yo) (1 — Ymin )]
Pp= —** 1——B—|—le(1——ymm) . (32)
Again from (6) and (7) we get
1 @ Bfs[E(y)— (Y1t ¥)(1—y)] (33)

Ao d& = [1—BE{(y+ B, (I—v)]
sfrom (9), we have

_fly_____ 4 [ 1f8[§(!/)“(‘?1"7‘y2)(1—“?/)] 6y
d ~ b+e—al [1—B{(y+B,(1—y] B
Integrating and taking the point of rupture as the origin of time, we get

_ B+ BU—y) , _ ABJs
Cy)—wl+w2>(1——y> Y= FTc—a

(35)

o f F*(y)dy=—B,t . .. . (69)



 DEFENCE SCIENCE JOURNAL - 69

with
_1—Bty)+B,(1—y)
PO=vp—@+ 99 0=) (364)
and v
L . 4B, fs _ ‘2
1%._.7;::i1::; .. .. = .. (36B)

" The' equation (35) or (36) holds good for both the phases of combustion
and gives the relation between ‘y’ and ‘¢.

The ‘equations (29), (80), (31) (32) and (35) are similar to the equations
(25), (26), (27), (29) and (32) respectively of H/L guns obtained by the present
author in his paper “Internal Ballistics of ngh low pressure guns with hepta-
tubular powders”, with the difference that in place of (¥, + ¥,) occurnng in
the above equations of the present paper ‘we have only W in the
paper on ‘Internal Ballistics of H/L pressure guns with hepta-tubular pow-
ders.” The shot travel at any instant, (in particular the position of all-burnt),
the pressure in the second chamber, and the velocity of the shot at any instant,
{in particular the muzzzle velocity) can therefore, be obtained in a Slmllal"
way.

We however, give here the main results which are obtained for the Re-
. coilless ngh-low pressure guns. Thus for the first phase of combustlon, we
“have,

14+ N,Z+ N, 2%+ N, Z°

F*(y) = L1Z+L2Z2+L323 =F*(Z)\* .o (37)
with _ . S S
Z=1-—y . oo .. (37A)
N1~—B2——B(a-—b—c) . .. .. .. (37TB)
No=—B (b+32) .. .. W . .. (370)
N,=Bc e .. .. (37D)
Ll-—a——b——-c—kyl Yoo .. .. (3TE)
Ly=1b+ 2 . . .. .. (37F)
Ly=—o¢ O e o (876)

so that the equation (36) becomes

jF**(Z)dz-—-Bst L 3
1 4 .

which on integration gives .

!
By = Z

2 .
—lA—T*s-(Z——I)-I-lllogZ—l— 2L log L2+ Lzt 1
3 .

La + L, + L1
2L/ I3, — 4 le: 4 2L Z+ L, + VL‘zz . 41,1'1;3
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with ‘ ‘ ) )
b= S e
1= I . R ..
L1L3N2—-—L1LN——L2 B ‘
ly = ‘ I, L el .. «. (39B)
L, LN, —L* N;— L, L
Jgom 1t L1L33 23 | .. .. .. (39C)
_ ot Lt vIBR—ALL, e
Y oLy Ly — /L% — 4L, L ‘ .
while for the second phase of combustion, we have
' 1—BH*(0)+ B, [1_’”+ (1_460@)]
F*(y) = - 1 .. (40)
H*(w)w(‘y1+‘¥2)[1—m+ l—secm)] o
= o* (w), say .. <. .. (41)
where

3(m+ 172
H*(@)=¢(y) =1— 8 (m2 —7) [ 1+ em 4pm €08 © ]H( ) (414)
so that for any instant during the second phase of combustion, we have

Bi= f q,** () dw . . . .. (42)
with . .
I—BH*(w)—l-Bz[l—-— +; (l—sec(u)]
** ((1))

B @)~ 99 [1— 22 L 1w ]

ln%;—(—-swwtanm) e .. (43)
In particular )
© = 42° 25’

" Bytp= f ¢ **w)dw s (44)

where suffix ‘B’ denotes the values at all-burnt position.
For the second chamber —
We get from (5), 2\ and (14)

dy 4 dr - dy e fYy(1—1y) . '
L dy | dy # J}— d+or—wqgPo(l—y) (49)
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which with the help of (34) becomes -
A2BERS () — (Wit Y (l—y) d [ de

Gte—of T—BLu T B(I—y) dyLdy ™
E@ =W+ ¥ (1=9)] _ _ caf¥%(l—y"

CI—BiWFB(—y 1T TFds—enva—yp) 4
D B EW (Wit 9 dX ] A -y
dy L1—-B¢(y)+ B, (1—y) dy X—B,(1—y)

1—Bt@)+ B(1—y) “n
EW— Wit ) l—y
with » '
B, L j 3 '
X = 341‘(';\92)(0""”,) .. .. .. (474)
= X, (1-{——%{6 oo (47B)
B,L, f u 3 *) P
XF sol(w%)c‘ R . ~. (470)
L ByL, } |
Bk My (“—"}ﬂ) o e e (4TD)

The equation (47) is similar to equation (49) of the paper “Internal Ballis-
tics of high-low pressure guns with hepta-tubular powders” by Guptal®
with the difference that in place of (¥, + W,), there ocours only W,
This equation (47) holds good for both phases of combustion s.e. before the
rupture as well as after the rupture of the grains and gives a relation between
y and X (defining shot-travel z at any instant during both phases of combus-
tion), '

(t) For the first phase of combustion, equation (47) bécomes

d LiZ+ L2+ L7 . dX7  ZL® )/
dZ\ 1+ N, Z+N, 22+ N, 22 az)~ X—B,Z *
1+ N,Z+ N, Z* + N, 28
LT LzrLZE L7 ] e (8

which is the same as equation (51) of Gupta® and hence the seiies solu-
tion (53) of that paper holds good in this case also. Thus the series solution
of (48) is given as ) o ' .

X=Xo+@Z+q¢22+¢22+ @ .. . .. (49)
‘where - ‘ : : Dol . C .

“=x ve T e .. .. (49A)
3N, 3L, B, 1 ' '

%= 41X, = 4L1Xo' + 4X,2 B 4X,3 - T e /(49B)
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[N2 L AN, 4L, WL TNL]L 3
&= ST 91;1 CI8LE L 9IL, JXT
n [5194gv1 5B, L] L [8L _ BN, By
_ 18L X2 6L, . 36 9
X- X3 ot 4 X4 + 36 X5 o .o ‘. . : i (490)

The equatxon (49) holds good Only upto the ruptu,re of the grams, i.e.
upto Z = 1. e

. The convergence of the seriés (49) can be established in the same way
a8 done in the case of hlgh-low pressure guns, (Guptal®), The condition
that Ly/L, is less than 1, is here found to be -

[(8m3-—56m)(\¥1+\y)—m3—34m2+111m] , h-
< 3md — 5 m?2— 47 m - 105

(¢) For the.second phase of combustion, the -\'équation 47) becomes
d 1 dX cos®w J L% (m+ 1)
79—0_[ e*(w) dw  sinw ] - (m—?))2 X
“[(m—3)—(m+ 1) (1 —sec w) ]
Lwos X Bi(n—8)—(mF 1) —seow)] ]
Y g w). .. (0)

This equatmn (50) can be integrated numerically only, to glve in terms
of w, the 1n1t1al conditions bemg

w =0, -
X = X, =value of X at the rupture -obtained from (49) when Z =

and ( )__O | E E

w=0

Pressure in the second vhdﬂbér —_
From (2) and (14), we have '
fY,1—y)

P= T Fa—an¥, 07 (51)
Whlch with the help of (37A), (47A) and (47D) becomes o
| f B 5

)

Tlns equa.tlon (52) gives pressure pin the second chamber at any . ins-
tant in terms of X and Z and ultimately in terms of Z alone,- since X can
be givenr in terms of Z for the first phase of .combustion by equation (49)
and for the second phase of combustion by equation (50) and the relation

—(l—y)—l— Z_l_ (1—-—3ecw) T 1))

,A"‘kh
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The velocity  of the shot is given from (474), (37A), (34) and (36B)
as

B _mama a1 ey,
T @ TeX dz Ay W T L PR
[:(y)—(\yl—*_ \yZ)Z} dX o . : . (54)
l—B¢(y+B,Z] dz S
Since X and ¢ (y) can be expressed in terms of Z alone for both phases
of combustions, equation (54) gives the velocity v at any instant in terms
of Z. -
Also the shot-travel z .is given by (47B). as

_C(X—-X,)
&r == T .
Thus the equations (55), (62) and (54) give the shot-travel, pressure in

the second chamber and the velocity of the shot for a given value of Z, at
any instant,

After All-Burnt (On Non-Isothermal Azsumptions)' ,

Since after all-burnt the gases cool considerably by expansion, we have
& non-isothermal model*. Let 7; and 7, be the temperatures in the two
chambers. ; S —

For the first chamber, the various equations can, theréfore, be written
as i— '

~ Energy Equation of the first chamber :—

. (55) -

= .o - . .. (56)
T, ek Y e
de’ . dN, .
AlS e = - 57
? (% - Ny (57)
. Y L N1 ) : .
. ] ! = ! e e o e 58
neo8 = Nip ’ - ( )
¢ that T, = 1— ' N,  1— '8 N, ° N ©9)
. Ny
Energy Equation of the second chamber :— » .

d = .. op dn n—1 ANy
& (N2T2)-°—(”-—1)(.TR—_ Tt+ {1 + 1"—’79'.}TI 7 (60) -
where l ‘

=1 =(n—1)(1+ k). : .o .. (604)
Equation of state (after all-burnt):— ‘

| P[C*— &Ny] = N, RT, .. .. ee L (8Y)
p[0'+dz—6N3”]=(3N3RT2 .o .e .o (62)

- *The case of isothermal model can be discussed in a similar WaY,
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Heuations of continuity for thé two' chambers:—

- ! Q® . % Ce s o
0=a ;‘”’NI TR AR T,
@ . VBRI, T YRR
S ONy qasz*P S . (Y
£ vEr, oo e el
Equation- of Inertia— | ‘ o
d2x L R
“'Tdt? = 6‘p el I - e i Caa .d (65)
Now .from (59) and (57), we have ' m
BN N (l—wgy  Yamn
e &= berv ! g : . i FRrTY ¢ el 66
Tz NIB l 1— %'y N : a » ( ‘)

L Nip |

where the suffix ‘B’ denotes the values at all-burnt pqzsition‘.‘ ‘Nég’lectilfl‘g
squares and higher pOWers of 'y, we get - S T

n-—-l NlB'—“N o ’

7= (@) " [1=en e (Bo2B]) )

80 that from (61), we have e

P _ @*—wan( ) r 1 —¥pq )”‘1 )
Py — C*——G)Nl'r) N]B 1——1)9' N h

Aga,m neglectmg Squares and hlgher powers of =, we have

i 2102 Yooy
Py ..[1_(1——N13)1'N13{C*+(n l)m}“] Nw)(sg)

where Ppis. glven by (32).

Again from (63), (69), and (67) on 'sn’npliﬁcation after‘ neglecting squares ahd
higher powers of 7, we have

dN,

%41 . . - ‘
_Jt—z*mB (Kz +QsN,) N, 3 co o (10)
my = (8% + 8% pp 1

oavVE VX, (Nm) £ L ~:'*,(76A‘)"“'

- , n—1 PB b} P S k
: r‘j@"n [Q* T W, Jooo e (70B)

Er=1=NigQs .. .. .. . .00
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Integrating (70) and applying conditions at the all-burnt, we get

n—1

N +4;(Nw ) T etsstogen oo

with | .
Q n—1 _ H .
AB=7%.3—_:—%.N,B . .. .. oo (T1AY -
L - Ve N T,
.. . .. (711B)
C'B-—-mBKB( )N1B - o ( _)
~ When 5 =0, Qp = 0, AB-—O, aﬂdKB'—__l-- o 7
2
N ,
ooy =D Ge—w)]T o L L (1

Nov% when 7 %0, as a first approximation lot us assyme that

. 2
n—1 ..
———AZ:;QBAm[l*FCB(P“tB)}:" Fhoeo e (M@

where h is a very small quantity, \
Substituting this in (71), we get -

2
[{1+oBt-tB)f” 1] +AB[{1+OB<t—~tB>} +h]
=1+AB+OB(t——tB)

" —3.
2 4p [1—{1+03(t_t3)} _,IJ
Vb 5 —(T4)

{1 05 (t—ts )}” [(n-1){1+6'3 (t—-mtg )} +(n—-—3)AB§]

(neglecting squares and higher powers of 7).

2
. IF‘NZ%L = [1 05 (:— 13 )] .4
L. R 1 ;

'v_.3k-

2AB[1-- {1 +03(t—t3)}"_:1—]
+ n—5 ’2

. _.{,1._+t Cx (t..;;tg‘)f [(n——«l){l—l—ﬂg (t-—-tg )f k-ll-’n«—-—3)A3 ]
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Hence

Mir _ {J(t)} [(n—l){J (t)} =945 ]

N, "3 .. (75)
(mn—1)J (@) +245+(n—542{ IO}

with ‘ |

J@)=1+Cp(t—15) . e .. (76A)

2 - —n
R L B U L ]
Mz L (n -:l)an—l{ ' }

N, = 24s o
or—l—VI; {I—I-C’B(t—-ts)} [1+ 2 ;:2_1_X
(”——1){14-03 (t—ip )}

3-—n : : V
{1—{1+03(t—tB)J. }] . .. (16)

(neglecting squares and higher powers of 4z ).

Therefore we have from (67) and (7 6),

2 3-—n n—1
TIB _[ Jg {1+ ___(1-4""l )}]
(n-—l)J
[‘l—nP’B(n-—l){l’—.{J 2(1+ 24 — L )H
) (n—1)J" —

3—
24p

,,—i,—(l"ﬁ:%) =76, (1) (1-.1—”_?‘_1) ]

T, —2
or _TE—‘J [1+

)

(neglecting squares and higher powers of 4, 4 and o, _ '
Ap and its higher powers). 5 8nd also the multiple-of 4 &#d
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,,,,, 3‘-”

245 [1—{1+03<t—¢3)}"”1
{ -I-C'B t--— ’

—ne (n-—l)[l—-—{l-i-oBt"tB)l n*lﬂw

: (78)
Again from (64) , (67) and '(69), we get "
‘ZNg =‘ '\y,Sz* . PB
®  VEa VIp ¥
‘ PB 1
[-( "N“?'{O* SRy 7 ](Nw)
n—1 .
N, \ 2 i
(32) T [1-op (- 42)]

. o n+l z'

dN. VAR Py N2

e C O
VR a VT \ Nz

[1+n{‘”’ (3—=2m)— Ny O*}(L—‘ )] . (19

(n,eglectmg squares and higher powers of n), _

2

N TReT 245
or dtz =Ul[J {1-]— B —— X

(n—l)J =T
3—n n+1 j
T )
fu,,;‘E sz—% v e e e .. (8OA)

0’5 (3 —2 - -
0,= { L2600 _y, &} . . L em



__n+1 o A8

+ 9 U, [{I—f-CB(t——tB)} a -—{1+6'B(t'—53)} ”“1 ]
+ M[{I-I-GB(IS—-—IB)} R
'2n"’
T =T

_{1+03(¢-—t3)} ] v (89)

Integrating (82), we get

4 . 2 s’ y
—1 : T —1-
-a-(%n—?—){l-l-c’z(t—"ttz)} " },
) s
+nU[ ——-—11{1+03(t——t3)} nt
§,=2 —1¢ e
e = 0 4 1+C’B(t——-t )} ]
' 4
(+;AB(n+1)[ (“—1{”03"’*‘3)} ""IJF
T (n—1) 4 : :
: n+l
(n—1>{1+03<t—t3)} =T
A R N VI R
-+ constant . _— .. (83)

Whent =.tpg, Ny= Nz
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..we have from (83),

) C——2

_ Uyn—1) ) "t

Nz-—*"——z—c?—[ {1+03(t tB)} ‘
2 4

+’7Us[-—{1+(’3(t——t3)} +%{1+03(t-—t3)} nn—l]‘\

+ AB(n+l) { +C'B t-—-tB)} n_—l

P+l
(n—l—l) {1 +03(t—t5>} e ]]

U, _ 4 n — 3)
: — . —_] -1 B
+ N ,wB*” [- BERE <n—n]
' x : (84)
Agam from (60), (5) and (58), we get
_(r =Ny dz  d% [ " —
‘N“”‘*ﬁw— P YT NJﬂ
, L) XS IR ' (8‘5;)
., integrating, we get.. - Sl
N,y — NapTop = — ‘"”“1
o~ B [(2Y (2]
o , , . ,
[ = N B e
, 1—no's N, : de
.0 , "M __ L
B c. e L .
But from (67), we get -

t

 (m=1) an,
1+ T W, T, d’dz
. ——"PB' : NIB o
s ,_
—f [H(n—-l)(lm e )] w(
.. [1 _,QP’B (n,";" 1)(1__ NIB ] ng dt . . 5 k .
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i .
: I8 ’ N] :
=f[n—”("-—1)??98-!-*7193'("2-—1)?1‘3 x

—1 sz
. dt.
( Nw)

(neglecting squares and higher powers of "7)-

—1
MS‘ 14 i o yT1§%~mj
7] 1—1]“3 N; ' ' .

-

S
=TwUlS" [n-—h(v‘z—l)np',,+ w1y J F—T X
17:] V' 4
‘ . 83—
(n—l)J"—l |
- gl
(n—1)J" 1
[1+'QU(1——J n-—l>+_‘4§(”’_+1_)___(1 Jn-—-l)]dt
\ o =D n=l ‘

t ’ 3n-—1 ~
. . Tn—1 :
=T1§U1LB [{”—”(%_—-I)fip' +m7Uz}J : .\‘ + {n?' (n®* —1)

Sn4l

n(3n — 1) _ Tn—1__ n(3"'—1) n«—l :
+ 20— 4 mU,}J o= a7 ]dt
on 2(n + 1) (3n — 1)

= Tust,f o Tliog P gy oD
B

2n 2(n+1) ) —(3n~1) »
-—TIBUl[OlJ ”‘"1+0J (n—l)_*_CsJ (n—l) 01__02 03],.

Kock k (X} ‘e e (87)
where , , _

(n—{(n — 1) mg, — 1 — T, a,

Cy= P
1 203 " - ) .o ' Y

o (874)




'DEFENCE SCIENCE JOURNAL - ‘ 81

(n = D{ w0 — w5 (12— 1) —n( 3""1)A } o

0= - .. (87B)
. A+ 1)Cs

Cy= 15 g LoraTh . .. (810)

Hence from (86);" we have

NI, _—Nng'eB - ’;;1;)“ [( ) ( )]
2(n 1)

+ T13U1[01{1+ C(t—ta)) 1 = + 02{1+ Cs (t—— i )} n—1)

+0, {1+ CB(t——-tB)}— = ~ 04 —-02;03] |
. (88)
where C,, C,, C; are given by (87A), (87B) and (87C).

From (65), (62) (84) and (88) we have on neglectmg squares and higher powers
of - and multiple of Agw, - -

2
2 , 1

ot [ e
'+ Ngp + ,U (n_l) ]] NZB T2B

- (n2—;2“ ( ) "221%“ ( & )2 + 118Uy %

‘ 2(n+i) :
(n—1)

[ 0, {1‘+~0_’3(t—t3)}‘ +0;{1+03 (t—-ftB‘)}

3 n—1 .
' -r g | : ' L
+ oy {1+0s(t—1ts)} _—01-02-‘03] .. (89)
where Uj, C'li C, and Cy are given by (80A), (874), (87B) and (87C).
The equation (89) is an ordinary differential equation of second order and

i dr
will give us @ andjd—a;— as functions of 7.

“However if 7 is neglected the equatlons (76), (78), (84), (88) and (89)

become . . :

.

N1=Nm{1+01;,(t—ts)} T L V)
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=T {l+0a(t—t)} ~ .. ..

' Ny= Nzp-+ - Ul(n 1) [1—{1+OB(t“‘tB)1n—l] : (92) -

Ny Ty = Nop Top — ~,Fnz;%p [( ) (dt ) ]

+.T13U(n-—1) 1—-{1+08(t“t3)} ] (93)

2Cp
a2
o dz:[0'+°” ]‘_N”T”
__ @—De de Yy B
=~ "2k \& )T “3ar

+ T13U1(” 1)[1__{1+03(t—t3)} ] . (94);"

These equations (90), (91), (92), (93) and (94) can easily be reduced to.
(50), (46), (54), (55) and (57) respectively of Kapur 7*,

It we put V=0, Y=Y, N, =N, and N, =1—N in the equa-
tions obtained here for recmlless high-low pressure guns we get the correspon-
ding results for high-low pressure guns as deduced by Gupta 2°,
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