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ABSTRACT

In this paper a’methodol'og}? has been developed, invol- -
ving Dirac-8-like functions, for comparative assessment
of efficiency of different types of search manceuvres in use L
in anti-submarine warfare, ‘ : - i

The motion of the target is treated as a modified ‘Random
Walk’ and the time-dependent probability field of its pres-
: * ence is evaluated. o ‘ _
Introduction '
There are set patterns of search manoeuvre adopted by ships to track an
enemy submarine whose contact has been momentary. A comparative assess-
ment of the efficiency of different searches is to be done. Towards this end,
and towards finally devising an optimum search pattern under given conditions
a methodology is developed involving Dirac-8-like functions defined ad hoe,.
The problem:is principally divided into two parts, viz. (1) the a - prioti.
probability field of the target’s presence subsequent to the known contact, and
(2) the probability of detection arising out of a particular search path across the *
above field, ' ‘ ’

The first part concerns the performance characteristics of the target,
such as the speed of the target, the minimum' diameter of its turn etc. and the
second part involves the performance of the searching ship and the sighting
instrument, such as the search speed, the rate of training ‘of the scanning
instrument ete. . o B

The problem is solved analytically by quantizing the motions of the target
and the searcher. The target is considered to move, with a constant speed u
along its path, which is supposed to be made up of contiguous straight line
segments of equal length . The motion is considered horizontal and the pro--
bability density p(z, ) is found for the target to be present, after time singe’
the known contact; at the position z=x--1y where z and y are the coordinates
w.r.t. the known position of contact as the “origin. Time is expressed as the’
number of straight hops made by the target. o

Random Turn

First suppose that the submarine is equally likely to.turn in any direction,,
after every hop. Then, since at a- given instant, the presences of the target at
Z, forevery Z in the plane, constitute a totality of mutually independent events, |

CP(nt) = HP €t —1)yp dt.. ¢>1) - .. - M
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Where I; d¢ denctes double integration over the ¢—plane and p (& =) is

the probability density that the target reaches Z from ( in'one hop of length

a. To express p.(8, z), define A (2) thus : '
OA@R=LO0D, & ;

i g € >0

sisa n.eighboui'hqod'of 7 with maximum width e. O i any operator like integ-

ration and multiplication used in this paper, .and : -

A (Z) = {(Area of s)}or 0 according as Z is in S or not. .. - (@) L
Tt is olear that for any integrable functionf(z) |
Iff(Z)A (Z— a)dZ =f(0,)01.07‘~ - s o | (3)

according as whether the double integration is over a fegion including tﬁé_ p@_m;
aor not. The case of f (Z)=1 specifies A (Z — a) a3 the probability density
field representing the certain presence of an object 2t a. On the same lines

:‘J Pi A(Z"*‘Z@) (Whel‘(th‘:l) e L e .  .' } (4)

s =1 L - .

is the probability (per unit area) that the target is at Z based on the certain
knowledge that it is at Z; (1< i<n) with an a priori probability P;, For then
the probability of presence of the target in a region S is Zj ?; for these j for
which Z; liesin S and this is the value given by integrating the expression (4)
over 8. Suppose it to be known that the target is present at apy point on
anare Z=2(s) ,0<s<1 R % R ()
with @ priori probability p(s) per unit length, s being the arcual length between
Z(0) and Z(s). Then, making use of the A-furiction; the probability (per unit
area) of the tagget"s‘ presence at Z is given by : . ‘

E(Z)=‘f p(s) A{ Z—Z(s) }ds’ R L R L PR A S (6)

By the definition in (2), the above integral is:zero unless Z lies on ‘the given
arc, in which case however it is infinite. But then it is infinite in such a way
that further integration w.r.t. Z leads to finite results.:In fact, by choosing the
neighbourhood 8 of Z (vide (2)).as an infinitesimal rectangle of one side
equal; and parallel to the arcual element ds at Z ‘{which is taken on the curve)

p

o It pl8) 7
E(?) 830 3 o R . (M
where 8 is the other side of the rectangle : so that, if 4 is a region “inside which
the portion of the given curve between Z (s,) and Z (s,) lies, then with proper
understanding : : P

J I E(Z) “in [ f 20 3 a3 >0 i

4 B
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where B is a belt of w1dth S about the are between Z (sl) and Z (s,) and hence

. ‘}“ 1'

J fros- f i j? R

whlch is the probabﬁlty of presence of the target mmde A Thus the probablhty |
density can be expressed as :

By =p(0)8 (Z—Z®)1) - o s o
where 8 is such that l Z — Z(S) | ds mmxmum and 8:is the Dlrac mpulse""ﬁ )
funetion. . o T e ik

PEUAE £ % AR A
(10) facilitates calculatlon of p{g 2y of 42).: On the auppasxtxon of equal
likelihood of the target turning in any direction, it ensués that, after a hop of
. length ‘@ from the position ;‘, the target.is:present, with equal hkehhooql,
anywhere on the circle |Z — ¢ | = a. Hence p(t, Z) is the value of E{Z)
when the p(s) of (10) i is 1/21ra and the ourve consxdered is the cn'cle. So, by (10). . .

(.,z>=—-—;1- S(lo—ti—a), -

* entire pla.ne

vnthP(z, 0)=A () . L o
;Thls lea.ds to th& result o B

| (z't)—(om -rdz"" ”"’"' s(lzm-—z.l-—a).ci'(z{fi_

(2',7 a) Lt V l ™ e” €1 ezA‘ e

€ =0
01 <t

where V'is the hypervolume of the region < *

Apart from (12), P(Z,t) can bﬁ -.eva:l;uu ed_ thgov 16 T¢
or its modlﬁed form derived below. Remembermg oW p ( z) w‘é& erived,
; L

\, - qu,ffp(g, gL A (z-%-wa’ )dz
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o
1 ¥ ,
o
o1 ) :
3o . Zmid o o S \ -
=f P(Z'—‘ae ,t'—‘l) d)- e ; . (14)
(]

AL 0

The last step but one is by virtue of the ‘sifting’ property of /\(?)as expressed
in (3). As instances of (14),

2min
P(z,l)—m(z—; Dy
—a(lzl~—a)/2m . . . (15)
) ' 2#13 - '
p(z,z)—_—fs(‘ Ima vk_a)d’,‘

690 47'rae f L2 ce e .o (16)

27wiA
‘where the mtegra,txon is over those ranges of A for whlch |z —ae  |lies
between @ — € and a + e. The geometry of the Argand plane shows that
P (2,2) =owhen|z| >2a
and—l/nzr\/xia?»—wrzj’ N v 1)
whenr=|2 | < 2a e

The same result can also be derived from (11) by finding

1
el —as(a—y | —a
1 Lt |
4r2a? e, 6 Do

~ where 4 is the area common to the annular belts of width 2¢, and 2e, about
the circles of radius a round zero and Z. Thus from (14), P(Z t) can be evalua-
ted through successive integrations gwen by

A/2€1 X 252 .o . (18)

- 1 1 .
t 2ﬂi¢ S '
P(z,t)=f . fA (#—a Z' : e r )da;1 . day (19)

(78

The validity of this method of A — functions is verified by notmg that
ffP(2t)dz =1 asitshould be .. .. . (20)

P(zt)=o0 when]z|>ta . . ,(21)
‘and P (z,8) = [[ P ( t,'r)P(z—-g,t———r)dg T T )
foroétg'r .. .o .. e e (28)

L
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These can be proved with the use of (11) by 1nduct10n Th‘e last relation leads
to an explicit evaluation of P(Z t) - .

Setting F (*, 1) = [[ P (2. 1) e N4 o

where ZAg' denotes (2 4+ £z) --- - i (23).
(22) implies that , 3
F&t) Ft) = (g, ) 0 <ty ly - L @)
— iz [
whence{ (t. t) } f f IZle YD gh dz
‘ — trpCas (0—g)
_fdejd RISl
2r
= ——‘3—; I exp (taP Cos @) do .
=Jo@p) .. .. L (25)

2
where ¢ = e

So, inversion of (23) gives
Pt)= oo j e f ap.p {J (ar} (—ip [20os)  (26)

Restricted Rate of '.l‘m'n

Next a more realistic assumption-is made ‘as to the possible directions of
turning by the target. Any structure with a steering mechanism (such as a
bicycle, automobile or a ship) requires a minimum width of lane to turn right-

- about. To be more precise, there is a maximum to the curvature of the path
which the vehicle can trace. This limiting. curvature is mdependent of the"
speed and is characteristic of the mass and the structure of the vehicle. Let d
be the minimum diameter of ‘right about turn’-of the target, so that the maxi-
mum curvature of its path will'be 2/d. In the quantized motion of straight
hops of length a , this implies that the angular dexﬁatlon between any two
successwe hops 1s at most ,

o« = 2/d . . o T ‘(26)

The equation (1) fails in this case since the probability of the target reaching Z
from ¢ in one hop is not now independent of the direction of approach- 6~ ¢
in the previous hop; and thereby is dependent on the actual path traced up to
Z. Deal, then, with the probablhty (density) Q (Z, t, §) of the target
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reaching Z at time ¢ with the last hop making an angle ¢ with the positive ~°

direction of X-axis. The fitst requn'ements on Q are

2n+ K LRI o . : ‘ s :
Pz, 1) —~!Q(z,t Hdy .. .. Lo, (@
andQ(zt¢+2n1r =Q (2t ) L e (29)

Assuming equally likely turn, at any stage, within ah’ angl « a recursive
v relatlon involving @ is derived, as in the case of (11) or (14) Define a function

3 ($) by

A A ’ P
08y =1 0 3 (&) e }
, € 9'0 : ‘ . o o
0is any operator used in this context in this paper ‘ . o T (30)
8(4’)= When|¢-2n7:| e(n-=o,:1:1 £2..) |
and = 0 otherwme J

Relations analogous to (3), (4), (6) can be demved viz,

) [ rwtg—0a= FO+2m & . @)

where v is the integral part of +1

andZ‘ p.A(%—% )8(4» $i)

is the probablhty field for the case where the target is  known to have reached
one of the points z; at an angle ¢; with a priofi probability p; . ‘When the

- target is known to have arrived at z(s) of (5) at an angle { (s) with a pro-
bability p(s), the ﬁeld is

Takmg the curve to be the circular arc

z(s) =t 4+ ae ,|7~,—-<p | € S (34) .
where I;, @ are constant complex and real numbers respectlvely, and taking

s = a(A — 9)
o dw@=2 e e
- and (s)-—1/2om o o o

(33) Leads to the result that, if the target has reached t,‘ at.an. angle cp 1;11& .
probability field at the next instant xs e e s

pel s WA LES T

Rk z"“’””"’ﬁ(z“thae Jea } SR
according as \¢_¢‘<or >a B A
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Hence, on the same- prmclple as under lies (1)

Q(z,t,¢)=fjd§f dcpec,t—d,q»)p(:,«p,w) (37

ab+a : i :
—§ - @e i
ﬂdc[ Ogi—19-2L=E=9 ) gy (g
p . . —
= [ Q(z—ae“”, (—Lo)de .. (39)“:
¢__a .v‘\ P ,ﬁ", - :

Suppose the target is known to have arrived at an angle between 6 and 6
(with equal likelihood) at the initial position, viz. the origin, One may then ,.
take the initial probability field as - 7 R
Q7o ¢) = {A@EO— O Foro .. . (40) -
according as ¢, lies between 6, and 0, or not Then equation (39) leads 10, -

t Yol dpbe oy e Yoo B L
Q@t ) =(2a) qu’l f " fd‘!"t—.l_..l ) fo T
. AN TR AU i
b, =@ = b, - L (41) "
—1 iy, “ L
where I = fA(z—a Z e )dtl)t
r=0 : - J

where the range of integration w.r.t. *lu is the intetval ‘commioito: (g omigey
¢y + «)and (6, 6,). Partlcularly, when any course Was. equally hkely

at the msta.nt of kuown contact,” = R
i L t—~1 14,:
e e E e
Q54 9) = (2a) ‘fdj:l... f d:/;tm i EEC I
i q’o""“ ; ,{ . ,‘pt—l_& B el g. L :!L”: ,. o \p ™
' e “"t—-z'i““ Srgd e T
t—1 up
(2 a) (27‘) f d¢1. .ole f dsl’t r 0A(z>""‘ a E e /)
. "‘po“"'ﬁ 4’5__,2. X \' } Sl

g

‘; ] s (42)
The consmtency of the methodology is verified by notin, me the equatlons
above reduce to those of the previous case (of random 't rn) w en o
integrand in (42) being periodie in ¢, (:1°* < - é te—ml)‘, 2]

= 7 implies that

P

RN} \\

QG b)) = (@n) f dgy ... f 9”: N (z—a é: b r) f )
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This combined with (28) leads to (19) as it should. For explieit evaluation of
Q (2,t,4)and P (Z, t) in the case of restricted turn, define g (Z,, &, f; Zy, ¢2) as
the probablhty that the target which arrives at Z, attime 4 by an angle
reaches Z, by angle 5[:2 at time ?,. It is clear tha.t

q (0, 0, 5[11,2,tt/1) Q(z,tx/:) .. S . ..o (44)
when 0; = 0,=¢ and 1/ B, — 6,) is replaced by 8;:/: ¢y) in (40).
By induction it can be proved that
A A TN s A SHE N 2R P o 2 1/12) is mdependent of zand ¢t.  (45)
with the help of the relation
b2 ‘
. 1 L 2 ' _
G (2 tp s 2, L ) = % f 9z by 2 —ae , t—IN) (46)
b—a '

which is derived on the same lines as (39). Induction proves also th”a.tysg

. o A o |
g (7 by, 3 %0 T o) =JI dz f‘g‘/‘ q (2t 3 2, 6, ) A 2, 1, 85 29, by, )

for all ¢ such that &, <t<ty R 11
" Set now that ,
F(&idda 1) = f f dz go,0.4y; mbgp)e®Az . L LT (48)
Umng (45)and (47)

Mo '
: J deF (&9, 90 F (Ehiabaits)

2= ‘
= f °d¢ j f dze? NS f fdw 4(0’0_ $y5w,t1,4)q(0,0,¢;2—1.25.05)
[using(45) ] = 2{2({; f f dze‘..“/“\;f I dw g(0,0,455w,t1,0) ¢ (wity izt g ;)

[using (47)] = f j dz eiOAZ q (o,o,a[«l;z,tl—i—tg,&,)w .

=F (C;‘l’v%;ﬁ"i‘%) . . . . (49)
(39), (44) and (48) imply i |
F(?,';!Pp%'»o) =3 ('&2"‘"’31) R L . - (50)

and F(iga; 1) = glgewp{@'ai’(«‘w(%—c?) }orj“ .. .. (1)

é,ccording as | Po—i | Oor >a, (whevr'e'g# peMP“} :
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(49) and (51) combine to give
9o + a

F(Z; ""ﬁ.o;t) [ dvlF(t, & 4y t—l) {”"“ Cos(ty ‘P}

Gp —

. Go + a Y1+«

~jd¢1 [ a, F(t;q;q,z,t_Q)(_z:T)x

—a ¢1—a

| exp{m,zcos(w )}

j=20
Yot P14+«

(2« )_— jdq;l qu;; a(zb; ——:ﬁ)e:rp ‘{WP 3 Cos (4;,_ )}(52)
bo—a dy —a

The set of equatlons (52), (48), (28) and the followmg one which can be proved
by inductioa wiz.

0, " é
1 «
Q(z t ¢”) = 6 q <O,0,X;Z,t,l/l)’lx (53)
combine to give,ffor the case of restricted tum,
- A ) 1— 6, A+a 1+
. 1GA2 1
f f Pt e dz = ( e%) f ax, f . . f«mx exp ioF 2 008(7\.‘——9)}
: . 7\1""& t,—l--x 27 J =; J
(54)
When the initial course'(just before contact) is random,
. I—t 2m Mta A g S
| Az (2oc ! .o S0
Pzte |, dz = AN JaN, Lo fdn x 1apZCos(\ . —q) b
JJeen ! i [ x exp {iapZ0ost, ¥
Ay—at AL e .
t—=1 ’
T : SR . (55)
. 2w o0
It - -3 . .
" Hence P(Z,t):(Za) ( 8w ) qu; fdp. FI
\ / e
D om M+ t-—l +u.
Where I _fdklfdkz fdxl empiw;Z'Cos ()\ — )— |2 lCoscp}
d ) Ay —o A
b (56)
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