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ABSTRACT

Gleneral properties of trajectories are indicated. Recent
methods for trajectory calculations, and for the setting up o
range tables are presented briefly. . .

Introduction '

. Taken in the -widest sense, the whole Universe is a system of projectiles in
flight. The spinning earth moving in its orbit round the sun, along with the
planets, their satellites, the comets, meteors, the zodiacal light and the cosmic
Tays are all projectiles. The sun- itself, along with the components of the solar
system, is a projectile moving in our galaxy, and one step further leads to
galaxies, and to extra-galactic nebulae as systems of projectiles.

Coming from the macroscopic to the ‘microscopic scale, the atom itself isa
projectile system. with all kinds of elementary particles taking part in the flight
subject to strange types of motion governed by the quantum and relativistic .
laws.

Tt is not intended to deal in this article with the inter-planetary types of
projectiles moving in the exosphere, or the earth satellites whose region of
motion is mwainly the ionosphere, although in a way, the study of these satel-
lite trajectories is simpler than that of normal trajectories in the tropo-and strato-
spheres, consequent on the assumption of molecular flow in the ionosphere. Also,
-in this region, the composition of oxygen and nitrogen is considered to be in the -
same tatio as at sea level viz 30 per cent and 70 per cent respectively, but due
to absorption of ultra-violet solar radiation, molecular oxygenis dissociat:
ed and exists as atomic partcles, while nitrogen remains in the molecular state.
Thus the mechanism of flight in the ionosphere is described by the equations of
* the free molecular flow theory, or the so-called super-aerodynamics and detailed
analysis of thelift and drag co-efficients ocourring for various body configurations
in high speed flight can be carried out on the basis of this theory. Tt can also be
shown that the realm of super aero-dynamics can be defined by the ratio of the
body size of the vehicle to the mean free path length of the particles in the gas
flow. Such hypersonic research is also bound to be of significance in the case of
ordinary trajectories. In fact, recent rockets, having sundered the sound barrier
are now running into the aerodynamic heating problem relating to ‘the terrific,
heat encountered on re-entry, and the success achieved in dealing with these
problems by using wind tunnel experiments for finding pressure, temperature
and density ratios for given Mach numbers, has emphasised the utility of such
experiments in ordinary trajectory calculations too. - :
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Laws of resistance

We now come to the subject of exterior ballistics related to projectiles in
the tropo-and strato-spheres of which the principal problem is the calculation
of trajectories based on the laws-of air resistance, and the conditions of the
atmosphere. Considering first the resistance of the air, the resistance function
obviously is a function of (z):the' form and dimensions of the projectile (4i) the
" velocity v of the prOJectlle relative to the air (443) the obliquity & or the angle
between v and the axis ‘of rotation :of the projectile and (¢v) the physical
and thermodynaniical characteristics of the atmosphere. Asis well known, it
“can be shown on this basis.that the retardatlon function R can be written as

BN L f v vd - '
R= w 7)2 ‘P C* ) __-) "’ (1)

where ¢ depends on the form of the pro;ectlle, a is its. d1ameter w its wexght
A—'pg ig the specific weight of air,.c* the veloeity of sound so that 'v/c * 15 the
Mach niomber M; v the coefficient -of viscosity, and d a linear dimension of the
pro]ectlle so' that vd/v is' the Reynold’s number In the. old form of the resis-

-tanece functlon, one had

R =i T.,.E(Y).:C o TR
U R
where ¢ = ¢ —— i the reclprocal =of the normal ballistic coefficient, and the

- 1ast faetor is a function of v only The d1ﬂ‘erence between (1) and (2), even neg-
lectmg the effect of v1scos1ty, is the appearance of c* the effect of which
_cannot be neglected and thls mlght be conmdered an essentlal 1mprovement of
_modern balhstms -

¢ (Considering next the atm osphenc oond1t1ons and denotmg by the suﬁix ¥
the conditions at altitude y above sea level, and bv the suffix 0 the conditions at
sea level, the main problem is to find the variations of the atm ospheric pressure
H a.nd of- the temperature with y. Introducmg the absolute temperatm'e i

0°1Te°ted for h“mldlty viz. T = T( 14 —5 )where f is the tension of water
vapour, 1t can be shown that o .
' —ﬁ-— = *—*k o elng a constant.,
' A , o ,
and assummg alaw pp ~ = const, or HA = const, with A a5 given
by experunental ballistics, one has R
R e S dH - o
h  giving T, = v, oL h0D

Fmally, for the vamatlon of ¢*, one has '

HEE e
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These enable the’putting’ of the retardation function (1), after neglecting
viscosity, in the form - : : ‘

. Ce 2A° A . ] T . : R
R = 'Y Do A, 'vng(%‘—,]) e »‘(4")

w
where j denotes the invﬂﬁencve of the dimensions of the projectile.
Now (4) is equivalent to ’
* ‘ CH, T, LY\

R = GTO W‘W?(W:])s“ﬂng )

’
]

) T AN . ..
Since v? T, = y?2 (—é—) , with co* a constg,nt, this expression is proporf,

tional to the square of the Mach number M, and can be taken inside the fanction -
¢, and one has the important result ' L

R'=c‘—g—3—-ép(M,‘j) R (2
Experimenfal results show that ¢ (M, j) can be written in the form - ‘
§ (L) =T, () —j F, (O) = F (W),
so that finally »

o R=c¢TF (M) N (O I
with ¢ = Hy /H,. It is to be noted that A has completely vanished from
the formulae. ' S L

Equation (6) forms the basis of modern ballistics, specially of the French
‘School, and it deserves wide adoption. What is actually done is to choose
judiciously three values of j depending on the general exterior profile of the pro-
jectile, and then develop a table called Table B, for numerical values of
F(M) for the three values, the methods of experimental ballistics being adopted
for setting up the table. Similarly, normal atmospheric conditions as functions
of altitude, for example, values of ¢ are notobtained by means of formulae but
by experimental determinations using explosive soundings and embodied in
another table, called Table A. The old relations : :

' : : —h —4

R=c¢ 2" F(v),and Ay = A, @ y(h= 10 )

are notbniously insufﬁcienf., and it is therefore an advaﬁtage; also lea.ding to
greater generality, to replace them by tables A & B. .

~ -The next step is the actual calculation of the trajectories and the setting up-
of the range tables. But before doing this, we might consider some general
questions relating to the integration of the equations of motion, some general
properties of trajectories, and methods of caleulation of arcs of trajectories.

Some general questions

Treating the problems related to perturbations of variations of the initial or
atmospheric conditions at time ¢ = 0; and to the motion of the projectile round.
its centre of gravity-as secondary ones, the principal probleny is the calculation
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of the trajectory in the vertical plane of the initial velocity, knowing the retar-
dation function. A .general solution of the principal problem should constitute a
procedure for the integration of the fundamental system of equations, freeing
itself from every hypothesis relating either to the standard atmosphere, or toa
law of resistance. Nevertheless, solutions obtained by making such hypotheses

B pw), and 2y = A0 by

would be of value as approx1mat10ns to the general theory. To this category
belong the theorems of Saint-Robert based onthe assumption Ay = A, other
general properties of trajectories are the principle of rigidity of the trajectory,
the pringiple of utilisation of oblique axes which avoids the initial angle «, the
formula valid for range under large values of the site of the target not involving
either the initial velocity or the ballistic co-efficient, and finally the problems of
inverse ballistics. Gteneralities on the integration of the equations of motion are
illustrated: by the Siacci method, and the method of developmentin convergent
series in powers of the ballistic coefficient.

Among one of the most important general methods is that of successive
calculation by arcs, of which the fundamental principle is that, given the
ballistic co-ordinates x,, y,, t,, 6,, v, at the origin of the arc, and 6, at its
extremity, one should be able to calcula,te the other co-ordinates at the extre-
mity. This method originally applied using the quadratic law of retardation,
and the exponential law for A, leads to two types of errors of a ballistic and
- geometrical nature. Recent methods of trajectory calculation amount to an

elimination of these errors by refining the method of arcs.
The method of G-H-M

- We will now describe a method developed and recently perfected by the
French Ballistic School called the G-H-M after the work of Garnier, Haags and
Marcus. This is of the general type mentioned at the beginning of the previous
article as being independent of any special laws relating either to R or the atir.os-
pheric conditions, but only using Table A for the latter, and Table B for the
empirical functions of air resistance. Thus, the method permits, keeping the
method of calculation invariant, the derival of a profit due to every improvement
in these two laws. In addition to A & B, two other tables C and D are used devot-
ed respectively to analytic functions for caleulating trajectories, and to analytic
funetions for the calculations of variations or alterations. This method is based
essentially on calculations of arcs, but generalises the earlier inelegant methods
by perfecting the numerical calculus so that besides fixing the closed rules of
calculation of the amplitude of the arcs for a given precision, it also satisfies
the conditions necessary for a practically feasible method for successive calcula-
tions by arcs. Further, it gives, with the same ease and precision, the methods of
calculation for the perturbations and the differential corrections.

The method uses the modern law for R given by (6) with c* the velocity of
sound at altitude y being a function of T". The following quantities & and ! whose
values are given in Table A are used in the calculations.

asR=c , and other simpifying assumptions

k=——(l-(logH) o
LW
l»—-——f% logT) :
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while Table B gives
n = _—_:..(_2, ‘ s 8
= (M) .o v e . .e . . X ( )

i.e. the degree of resistance of the air, Table B gives, besides, three laws of
resistance with the common form

F (M) = F; (M) —j F, (M),

" where j characterises the external profile of the pro]ectlle and three round
figures,j = 0-04,0-14and 0-24 are taken, the first one corresponding to a
modern, and the third to an old type of prOJectlle The table also contains a sub-
table J (M) which corresponds to variation of j by 0-01. In view of the discon-
tinu'ty of F' (M) and hence also.of n at the point M =.1, Table B is suitably
modified by giving in blue coloured pages the values of F (M) for M<1, calcu-
lated for M slightly greater than 1, and in red -coloured pages the values. of
f(M) for M>1, calculated for M shghtly less than 1.

Using u = v cos 0 and tan 0 as the essential varmbles and 1ntroducmg the
pure numbers p = R/g, and

de . r 0
¢ =..[ cos§ — logtan (T - 7),
0
the fundamental equation of the hodograph becomes -
du . - : i

~ Using the indices 0 and 1 for the several balhstm variables at the beginning
and end of the arc, and D for total variat ons, for example, De=x,—z, etc., ex-
cept that DE = £,—§, and also the index “/a’” to characterise the values Whlch
are only a first approx ‘mation to the end values, the integration of (9) leads to

log u, —log u = f? gNdE = B, T e 1oy
. / .
when N = logjge. If we know 8, we find Dx = u, u,. ~g— (tan: 6, — tan 6,)

and thus we are led to the calculation of z,. Itis essent’al to find the first deriva-

tive of p (E) as a simple expression, so that calculation of -higher derivatives
may be possible, at least upto p "(§). Th's ‘s achleved by usmg R—gp: cEF(M)
and gettmg

dp _ dv .
—;—mn—v———hdy .o ~.j .o . (11)
d . ' ‘ '
and "—?P-=(np-{—msm6)d_§.». SR .(12)
where m =n + hv?/g, h =k —n/, and

v (), - nee p°+- ind) .. az)
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Writing (10) as _ :
v ) B loguo—logu1=B‘=p;NdE : .. .. (10"
with p; as the mean value over the are, the next step is the development in a
geries in the neighbourhood 'of &, in the form:

p1=Po—P.DE+ 5 o’ DE — 5 6DE+ .. (13)

& . .
’ 1 1 o
[#E=eDe— 3 2D+ 3 8D~ - (19
te. pi = p,— "217 o’ Dg + % o, De— .. (15)

~"'The second approximation is based on employing ‘

.b k Pia = B, — % Po’Df ‘ L
and similarly for higher apprcximations. The essential results are as follows :—
Starting from ¢, exact to the second order, one gets gi, correct to the third
. order which permits calculation of u, correct to the fourth order, after having
calculated g,” and so on. All the G-H-M methods run on these lives. The
trouble taken in calculating p,’ islargely compensated by the utilisation made
possible of large values of D, from where results a considerable diminution in the
number of arcs used. '

The scheme for calculation of an arc, the plan of calculation, and the details
of calculation can all be easily systematised. The fixation of the amplitudes of the
arcs, the errors committed at the successive stages for the several D’s ard the
limitations on these errors can also be derived. Ore could further defire Coeffi-
cients of security for the several ballistics elemer:ts; for example censidering 0, this

coefficient fg is defined as %Bg, and thege coefficients too can be caleulated, and

serve as practical rules of limitation on the émplifude's of the arcs used in the
. calculation. 3 . , : '

Ttis worthy of note that the labour of the G-H-M method whieh is purely
numerical in character has recently been shown to be capable of much simplifi-
cation if we use the Runge-Kutta metohd of numerical integration.

~ Two particular protlems amenable to the G-H-M method are the calcuala-
tion of zenithal trajectories, and the calculation of trajectories of the Keplerian
Orbit type, in particular elliptic types, when the projectile attairs a high alti-
tude in the atmosphere, where the resistarce of the air is negligible. These latter
types of orbits are related to the inter-continental ballistic missiles.

Conclusion .

We have indicated above the barest outlines of the principal problem of
theoretical exterior ballistics. It is necessary to supplement this by consiaerirg
the secondary problems mentioned above. Specially in- view of the fact that
modern methods do not rely on particular laws of retardation, the importance
of experimenta) ballistics, specially of wind tunnel experiments for the calcula-
tion of tables of type B becomes evident. The same is true for construction of

f

tables of type A also, < 3
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Lastly, it is necessary to deal with problems of applied ballistics, specially
the fundamental one of the construction of range tables based on the pre-
viously established theoretical and experimental results.
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Discussion

At the outset Mr. B.N. Sen (Kirkee) warted tc know whether the G.H.M.
method discussed was better than the other method either in being quicker or
in giving results agreeing more closely with those of Range Tables. o

“Prof. Rao replied that he had confined himself to the theoretical calcula-
tion of the trajectory ard the G.H.M. method was only one of such methods,
its chief merit being its elegance. Comparison of theoretically celculated results
~with the range tables involved a number of factors and was an aspect of
Applied Ballistics which he had not touched upon. Do

Dr. Thiruvenkatachar pointed out that the computation of trajectories was
a prerequisite for the compilation of Range Tables and kence the question of
any method for computation of the trajectories giving results agreeing with
the range tables did not arise. S S

Dr. Varma and Dr. Thiruvenkatachar drew attention to the fact that in
practice the calculated trajectories and the fired results had to be matclied by
suitably adjusting the ballistic coefficient. =~ . T

The use of two parameters in the Dupont’s resistance law was the subject of
congiderable discussion. It was explained by Mr. N.8. Venkatesan (New Delhi)
that the introduction of two parameters erabled ore tu get a fairly constant
ballistic coefficient over the range cf elevations. He mentioned that since.the
value of the ballistic coefficient was obtained by interpretation, from the three
or foar prints obtained from actual firirgs, it was desirable to havea €, which
varied with elevation. Generally that value of j, which gave the least variation
for C, was chosen. S R ,

The discussion then centered or the necessity for the use of electronic
machines for ¢.mputing the trajectories and from this point of view Dr. S.N.
Mitra (Calcutta) wanted to know whether this method ha.. ary iterative pro-
~ cess in it 80 as to elimirate the chance of any error being propagated durirg
successive stages of computation. Prof. Rae replied that the method was
iterative and was to be cairied out in a large number of steps. e

Major H.S. Subba Rao drew attention to the problem of the stability of a
projectile. He mentioned that the minimal conditions for stability usually - ac-
cepted is S>1. This paturally led ove to enquire as to how high a value should
8 have and whether a valuefor 8 =90r10 is acceptable. This condition had
been later moaified by Nielson, Synge, McShane and others and they had intro-
duced three conditions jor stability. He felt that this problem was a very impor-
tant one and needed careful study. ' S AR S

The chairman agreed with the above remarks and he felt that due cousider-

“ation had not been given to this problem so far. He stressed the need for
further investigation. R



