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ABSTRACT

The paper outlines the theoretical and experimental
procedure one has to adopt for flutter prevention during the
various stages (project; design and prototype) of the develop-
ment of a modern aircraft. With the advent of high speed, the
aerodynamic coefficients have to be calculated with due
regard to-the effects of compressibility, finite aspect ratio of
the lifting surfaces, sweep back and other peculiar shapes of
the wings. The use of thin, small aspect ratio wings with exter-
nal masses, necessitates the computation of higher frequency
modes of vibration. Single degree of freedom flutter and the
effect of control surface non-linearities has also become very
important, ,

Thus, it is shown how the availability of high speed com-
puting machines, improved experimental technique for model
and full scale testing has nét kept pace with the uncertain-
ties associated with the transonic speeds, low aspect ratio and
the high frequency modes. Cross-checking of theoretical and
experimental results at every stage seems to be the only
answer, ‘ :

Introduction

The problem of aircraft flutter arising as an interaction of inertial, elastic
and serodynamic forces is solved by three groups of workers. One group
evaluates the aerodynamic forces which act on an oscillating aerofoil, the second
solves the vibration problem due to inertial and elastic forces alone. The
third group is to solve the differential equations which express the interaction of

~ all the three forces.

The increase in the aircraft speed and the use of thin swept back or delta
shaped aerofoils with small aspect ratios and external masses have complicated
the whole problem, because the simplifying assumptions which one could pre-
viously make are no longer valid. The theoretical aerodynamic derivatives
become quite uncertain in the transonic range, because of the presence of mixed
flow and shock waves. One has to consider a greater number of vibration
modes, body degrees of freedom and higher overtones. Thus only high speed
computing machines, capable of handling six or more degrees of freedom can
solve the flutter equations. ' ’

Due to the above mentioned complications the flutter problem is solved in at
least three different stages. In the project stage, one uses simple semi-empirica
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formulae to get the flutter speed and to know the mass-balancing required to
- avoid control surface flutter. In the design stage, one carries out flutter calcula-
tions with a limited number of arbitrary or normal vibration modes and using
. two-dimensional inecompressible aerodynamic derivatives with empirical com-
_ pressibility corrections. When the prototype stage is reached, more elaborate
flutter calculations are carried out. The normal vibration modes are checked
experimentally, The supersonic and compressible subsonic .aerodynamic deri-
vatives (depending upon the aircraft design speed) are used after due regard to
sweep and aspect ratio effects. For the transonic range only the aerodynamic
derivatives which have been checked experiméntally are made use of. The
" flutter equations include all the important vibration modes. Finally, flutter

models are tested in the. wind tunnels and in free flight with the help of ground
launched rockets. ' ! »

If the flight tests and the abovementioned elaborate flutter calculations
predict marginal stabilities, full scale flight flutter testing has to be carried out.

The paper attempts at presenting the present stage of progress in- the
different branches of flutter, especially in the aerodynamic field. The flutter
procedure adopted these days is also outlined.

Oscillating Aerofoil Theory o .

The. aerodynamic forces are expressed in terms of non-dimensional aerody-
namic derivatives, which are given in the form of tables for different values of
the reduced frequency parameter k=we/2V, where w is the oscillation frequency,
¢ is the chord length and V is the aircraft speed.

The two-dimensional incompressible’ aerodynamic derivatives include the
effect of control surface and tab deflections, their aerodynamic-balance and the
effect of air gap between the different moving surfaces. On each span-wise
aerofoil section the aerodynamic force refers to the corresponding chord length,
thus making use of the strip theory, under which the particular sectior is assum-
ed to be a part of an infinitely long rectangular aerofoil. Extension of Multhopp’s
lifting surface theory to the case of oscillating aerofoil has not found much
favour because the incompressible aerodynamic derivatives are now-a-days
‘used for getting only an approximate answer to the flutter problem.

For supersonic flow, the linearised differential equations of the hyperholic
type satisfied by Prandtl’s acceleration potential function have been solved by
several methods, namely, superposition of sources and sinks, Laplace trans- -
formation and Riemann’s method of characteristies. The two-dimensional
derivatives have been tabulated for the various values of the Mach number M.

Theoretically it was observed and experimentally - confirmed that the
pitching damping coefficient became negative at low supersonic speeds (1 <
M2 < 2-5) for small values of the reduced frequency parameter. This would
lead to single degree of freedom flutter and the phenomenon has since been
studied theoretically as well as experimentally. ‘

Extension of the two-dimensional theory to three dimensjons has been
confined to particular aerofoil shapes, namely, rectangular and triangular, the
later referring to delta shaped wings. One has to consider purely supersonic,
purely sub-sonic or mixed flow conditions according to the delineation of the
lifting surface by the Mach lines from the leading tips. The effect of the Mach
Jines from the control surface leading tips is also being considered,
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Calculation of the aerodynamlc derivatives in the case of subsonic com-
pressible flow is more difficult than the supersonic case, because the airflows
above and below the aerofoil and in the wake are no longer independent. This
region is a very important one requiring further investigation because all high
speed aircraft have to pass through it and will therefore be discussed in greater
detail. : '

The linearised parhal differential equation satisfied by the acceleratlon
potential function is of the elliptic type. Possio obtained the solution of
this equation in the form of an mtegral and expressed the relationship between
the aerofoil vertical velocity w(z) (or down-wash) and the lift dlstrlbutlon
L () as under

w (2 fL Mx——f\df ()

The time fa(,tor exp (1wt) is 0m1tted from both sides and po represents the
undisturbed fluid density. # and ¢ are non-dimensional chordwise coor-
dinates. The leading and trailing edges correspond to =—1 and & = + 1
respectively. The kernel K (M, v — §) has a singular point at z = §
which has been isolated in several ways by different authors, Possio’ and
Schwarz? put ..

K(Mz—E) = KSing WMae—&) + K (Mz—¢g)

where Kging (M, 2—) represents the singular part and K; (M, z — §) stands
for the non-singular portion. Tables of both K (M, z—§) and K; (M, »—§)
bave been published by - Possiol, Schwarz?  Dietz® and Schade®. Frazer®
isolated the complete expansion of K (M, z—¢ ) in the vicinity of © = ¢.
Dietze? expresses K M, z — ) as the sum of three expressions, one expres-
sing its counterpart in the case M = O. Second is a power series in ( z— §)
with indices higher than unity and the third contains the smgular terms, con-
stant terms and terms having ( @— & ) as a factor.

Function L () also has a singularity at the point correspondmg to the
leadmg edge of the aerofoil. Possio? expressed itas-

L(f) _l-l

Aol A 0t~ +Sm262A Cos 0 L@
n=1 .
where E = « Cos 0. Thus ‘the - first term contains the smgulanty The ‘
aerodynamic forces obtained by using this expression involve a number of
co-efficients Ao, Ag.........iiiinn . To avoid this Frazer® adopted
the common expresswn used inthe steady aerofoxl theory, namely,
L _ 0 | :
% ol A§ Cot —- + 121'__‘14 ‘Sm nf . - (3)-

'The normal '_f_ofc::_e (measured doanards)k is;given by the expression -

s

— [ L @®sin0d0— —m,V: @+ 5 A @
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The pitching moment about the qﬁarter-chord is given by ekprescsion

fL &) (Cos6—~——) Sin 0o = — - T oV (A, —Ay . ..

Usmg the tabulated values of the kernel K (M x—§) and substltutmg ex-
pression (3) for L (¥) in equation (1), one obtains the values of the coefficients
Ao, Aot in terms of the aerofoil oscillation. Possio? has used
only three collocation points (leading edge, trailing edge and the mid-chord
point) whereas Frazer® made use of E-point collocation and even seven-point
dollocation for higher values of the reduced frequency. Dietz® has solved equa-
tion (1) by an iterative method, whereas Eichler® and Schade?® reduce the pro- .
blem to the solution of a set of linear algebraic equations, the latter using a
serjes in Legender’s polynomial for the non-singular portion of L ( € ).

With a view to checking theoretical results Jones” obtained the solution
in terms of velocity potential and arrived at the results

2w (W 1) f g 8
. © : ) .
. T4
where 271 — f o 9 K® Vool . .M
. —1 ’
and W = v exp [-tM2k/ (1—M2)]
' v 1—-M2

Equation (6) is similar to that obtained in the incompressible flow. The equa-
tions (6) and (7) may be solved either by the method of iteration 7 or by ex-
pressing® K as a series in the well known functions K, Ky, .............. .~
which occur in incompressible flow theory. By applying the method of
successive approximation, any order of desired accuracy may be attained.

The other approach to the two-dimensional compressible flow equations
suggested by several workers, but pursued by workers at National Lucht-
vaartlaboratorium?®, is to solve it directly in terms of series of Mathieu func-
tions by using elliptic co-ordinates. \

The three dimensional theory for the unsteady compresmble subsonic
flow has been attacked in two different = ways. One approach involves the
transformation of the governing differential equation by a suitable choice of
orthogonal coordinates followed by the use of classical method of separation
of variables. This method was used by Schade and Krienesl® for the oscil-
lating circular plate and has been recently generalised by Kuessnerl. The
cases of infinitely long ribbon, cifcular and elliptic aerofoils have been studied.
In the first case the solution is expressible in terms of Mathieu functions, in
the second case the solution involves Lame’s functions. The third case in-
volves still less known Wave functions.
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The unsteady lifting surface theory is also built up by generalising Possio’s
integral equation as ' ,

vy = 3 [ JT @D KMo g y—ndedy . )
. o S )

where S denotes the aerofoil surface. The two dimensional kernel K (M, 2—§,
y—n) has been extensively treated by Watkins, Runyan and Woolston!2 It
has been expressed in terms of Bessel and Struve functions and non-singular
integrals. The singularities at y=y and 2— & <O have been isolated. Finally
the kernel has been expressed as a series in powers of reduced frequency. Using
these results Runyan and Woolston?® have shown how three-dimensional deri-
vatives can be calculated for any plan form in the subsonic and sonic cases.
Specific results for rectangular and triangular wings compare favourably with
the experimental values.

Al these theories are based on the assumption of linearised flow, inviscid
fluid, small aerofoil thickness, etc. The boundary layer effect and the presence
of shock waves and mixed flow are overlooked. To meet the above objection,

experiments have been conducted to measure the aerodynamic: derivatives in

the subsonic, sonic and supersonic regions. 'These’ experiments also establish
the effects of finite aspect ratio, sweepback and other non-conventional plan
forms. For measuring the aerodynamic derivatives one employs rigid models
on which only selected degrees of freedom are - permitted. Both overall wing
derivatives or control surface derivatives can be measured. The experiments:

. can either be conducted in a wind tunnel or in free flight with the help of ground
launched rockets, in which case three models pitching about different axes are
needed in order to get complete set of derivatives. As experiments on models
cannot be completely representative of the actual situation, these derivatives
cannot be directly employed for exact flutter calculations. Instead they pro-
vide a good check to the theoretical values.

The Vibration Problem

The vibration problem is solved on the basis of the principle of ‘semi-
rigidity’ where the structure is permitted only a certain number of degrees of
freedom. - The selection of these degrees of freedom is very important. In the
beginning one assumed parabolic deflection mode for flexure and linear deflec-
tion law for the torsion of fixed root wings. Later simple engineering formulae
were used to get the wing deflection mode, and for the torsion mode one assumed
the wing to be a pure torque box. The effects of cut out were included by
assuming that certain members carried only compressive stresses whereas the
. others carried shear stresses only. These developments led to what are called

uncoupled modes. In general, however, flexure and torsion exist simultane-
-ously in any vibration mode and hence normal modes {coupled) of vibration
are being used for more exact flutter calculations. Special methods are applied
to treat the case of swept back and delta wings where the various stress-carrving
elements are not mutually perpendicular. The effect of including body
freedoms and localised masses has also been investigated. This usually neces-
sitates the inclusion of higher modes of vibration. ’ '
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Even the advanced procedure for calculating the vibration modes is based
on simplifying assumptions. Experimental verification at each stage is desir-
able. Firstly, one can obtain the flexural and torsional influence coefficients
by simply measuring-the deflections eorresponding to applied loads and tor-
- ques. Secondly for getting the un-coupled resonance modes one excites the

structure under investigation by one or more exciters suitably phased and
_positioned. The deflections at the various points are measured through an
arrangement of pick-ups, amplifiers and recorders. Lastly when the first
prototype is ready, experiments are conducted to get the mormal modes of
vibrations. Co : : !

The results obtained experimentally sfiould not be used for flutter caleu-
lations directly, as they have their own limitations. They provide a very good
check for the theoretical calculations. Any discrepancies can be investigated
and the data used in flutter calculations can be modified accordingly.

Flutter Equations )

The interaction of inertial, elastic and aerodynamic forces is expressed
as Lagrangian equations of motion for &, non-conservative system.  For »
degrees of freedom one gets n equations of the form T

n . : e
z {Am' Ly "l‘ (Bm‘ v + Dﬂr) Ty "lf'(Cnr V2 4 Enr) Tr }20 . (9)
r=1 R o

The coefficients A, B, C, .D,......:.ete., represent the structural and
aerodynamic characteristics and depend upon the reduced frequency para-
meter. At the critical flutter speed where the motion may be assumed to he
simple harmonic, the above equations reduce to simultaneous algebraic ‘equas
tions with complex coefficients. Such equations have been solved with. the
help of direct .analogue computors, simultaneous equations. solvers or even
desk calculators. s s

Tt is desirable to solve equation (9) in a general manner. TFirstly, because
one would like to know the vibration characteristics as the flutter speed is
approached and secondly, such a solution may suggest means to avoid flutter.
Flutter simulators and differential analysers have been used for this purpose.
A flutter simulator capable of handling six degrees of freedom is in operation
at the Royal Aircraft Establishment!, UK. " On the electronic: differential
analyser (PREDA) available at the Indian Institute ‘of Science, Bangalore,
only a simple two degree of freedom problem. could be solved®. = =~

The basic method of solving the flutter equations:on flutter simulators
or differential analysers is as follows. Assuming a certain value of the:reduced
frequency k=wc/2V " one-calculates the coefficients A, B, C........ete. - The
problem is then set on the machine, with V as variable. Corresponding.to
the - different V values, the machine provides the “oscillation frequencies. .
The aircraft speed V and the corresponding o, satisfying the chosen reduced -
frequency provides the answer. For this aireraft ‘speed, the: oscillation. mode
is-also obtained from the machine. " DR B St e

The calculations are repeated for several values of the reduced frequency,

cach giving the oscillation mode corresponding to a certain aircraft speed.
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This ensemble provides the ranges of aireraft speeds for which the oscillations
are either of divergent or damping nature. - L
For checking the theoretical flutter calculations, flutter models are-de-
signed to represent the full scale structure as far as possible. They are tested
in wind tunnels, thus providing the flutter speeds and the modes- of flutter, for
various stiffnesses and mass positions. For high spéed work, free flight models
are also used with the help of ground launched rockets. . -

Flutter prediction in practice

The full scale flutter calculations are very complicated, therefore; one’
improves the accuracy of these calculations as the design proceeds as indicated
below. : : L

Design Criteria

In the project stage simple formulz based on experimental and theoretical
considerations are used to get preliminary weight estimates. To avoid wing

‘flexure torsion flutter, a torsional stiffness criterion giving the relationship
between the flutter speed and the torsional stiffness is considered sufficient?s.
The criterion includes the effect of Mach number and sweepback and is con-
sidered valid for M less than 0-95 and Aspect ratios greater than 3. To avoid
control surface (unpowered) flutter the design criteria requires static and dyna-
mic mass balancing of the control surfaces. In addition, the aileron should
also satisfy a torsional stiffness criterion, and the powered controls should be
operated through either a truly irreversible unit or damper unit of adequate

power, having minimum flexibility and blacklash.
Preliminary flutter ca,lculationS'

Once the design is chosen, simple flutter calculations are carried out. Only
a limited number of degrees of freedom are chosen. Arbitrary or uncoupled
modes of vibrations are used. The two-dimensional aerodynamic derivatives
corrected for the effects of compressibility, aspect ratio (empirical correction)
and sweepback. are employed, and the problem is solved to get the critical
flutter speed. Such a procedure for a conventional unswept wing has been
given in a report prepared by the author'.

Final flutter calculations ‘ .

As soon as a prototype is ready, normal vibration modes are obtained
“experimentally and checked with the calculated normal modes. Aerodynamic
derivatives appropriate to the plan form and the speed range under investiga-
tion and possibly checked by experiments are used; in conjunction with the
normal modes for flutter calculations. Higher modes of vibrations and body
degrees of freedom are also included. The flutter equations are solved ‘on
differential analysers or flutter simulators to get not only the flutter speed, but
also the oscillation trend as the flutter speed is approached.
Flight testing ‘ L

During the course of flight testing a -multichannel vibration equipment
is installed in the aircraft with a view to finding out if there are any poorly
damped vibration modes because such modes generally lead to single degree
of freedom flutter. In successive flights the aircraft speed is increased and
the vibration modes are recorded. If such tests indicate marginal stabilities,.
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comprehensive Flight Flutter testing is undertaken. The aircraft structure
or controls are set into continuous sinusoidal oscillations, and the vibration
response is recorded as the oscillation frequency is increased. Successive
flights are made at increasing speeds, the approach to the critical flutter condi-
tion being indicated by an increase in the response amplitude with air speed.
The other alternative is to-cut off the exciter suddenly and record the decaying
oscillations. As the critical flutter speed is approached, the oscillations take
more time to damp out. ' .

Conclusions -

The compressible oscillating aerofoil theory in the subsonic range needs
further examination and should be extended to three dimensions. The theore-
tical flutter calculations should invariably be checked by the experimental
measurements and wvice versa. ‘ : - .
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