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ABSTRACT

In the present paper we have discussed the internal
ballistics of composite charges when ¢,5%v, (i) when the rate
of burning is proportional to pcessure, the equations for the
first stage have been simplified, (¢7) when the two component
charges are tubular, it has been shown that in the first stage,
the composite charge burns as a single charge and this
enables us to write the fundamental differential equations
together with initial conditions for both the power law and
the Linear law, (#s) the continuity of the pressure-time
curve at the end of the first stage and at all-burnt has
been discussed, (7v) the conditions for maximum pressure
to occur in any stage given in I have been improved
to take into account the possible discontinuity in dp/dt,
and an alternative method of discussing the problem
has been indicated. :

Introduction

In two recent papers, Aggarwal 12 has given a method for solving the
equations of Internal Ballistics when v,, e, for the two component charges
are not necessarily equal. In paper I, he considered the solution for the linear
law of burning when the component charges have the standard quadratic form-
fuction and in paper II, he gave the solution for the power law of burning
for the particular case, when both the component charges are tubular.

One object of the present paper is to suggest certain simplifications in the
solution, for both the laws, for the first stage of burning i.e., the stage when
both the component charges are burning. However, when both the component
charges burn out simultaneously, there is only one stage of burningand the
" gimplifications suggested here apply to the entire period of burning.

In the particular case, when both the component charges are tubular,
we have shown here that for the first stage, for both the laws of burning, the
composite charge behaves as a single charge with suitable values for the para-
meters defining its composition. For this case, a method for solving the
equations of Internal Ballistics for a third law, viz, when the rate of burning
is a linear function of the pressure has also been given.

‘We have also discussed here the continuity of the pressure-time derivative
at the end of the first stage and at all-burnt and shown that, in general, even
when o 5% vy, '
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(¥) dp/dt will be continuous at the end of the first stage if and only if
- the charge to burn out first is in cord form.

(it) dpjdt will be continuous at all-burnt if and only if the charge to
burn out second is in cord form. '

When +y;=1,, these results were first established by Kapur5®- -

The stage in which the maximum pressure can occur has been discussed
in 1 by the author and three possibilities are mentioned viz, that the
maximum pressure can occur when

(@) both the charges are burning i.e., in the first si;a.ge.

(b) charge C, has been burnt out and charge C, is burning i.e., in the
second stage.

(¢) both the chargés are burnt out i.e. at all-burnt. ~.

The possible discontinuity in dp/dt at the end of the first stage enables

us to discuss a fourth possibility viz., that the maximum pressure can occur
in

(d) crossing from the first stage to the second.

We have obtained the conditions for case (d). Actually conditions given
for case (b) apply to case (d) and the conditions given there for case
(¢) apply only when both the component charges burn out simultaneously.
The conditions in other cases have also been improved by noting that for a
pressure-maximum to occur at any instant, itis not necessary that dp/dt
should vanish at that time, and that, in general, the change in sign of dp/d¢

from positive to negative at that instant would be sufficient to ensure a
pressure-maximum here. ‘

Basic equations and the conditions for simultaneous and non-simultaneous
SREER burning of the component charges

The four basic equations of Internal Ballistics, for the present problem

are: , :
o0 G 7y +n2 Cy Zy
Fl 01 Z]_ Fz 02 ZZ . vl——-]_ lyz—-—]_ 2
o1 T —1 ‘—‘Ap (x+) ;0 241,C, Z, +1 v (1) ‘|
or¥,C, Z, +kF,Cy Z, '

n,C Z, +kn, Co Z
=M () S 7T G, TR MY ()
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where
wy;= 15w+ }(C;+ Gy, .. - .. (1b)
: C C v :
Az=Ko——8—11— "'sf . e (L)
_ 7l
. k = T . SIRED (1d)
dv dv ‘ .
ige = WMV —-(E-=Ap . .. . o (2)
Z = (1—f) (1+68) [=1,2] .. .. .. (3
. dfi : . \ o
Dl_d_(':— = —p p* [i=1, 2] .o .. e (4)
From (4)
g 1 dfy |
Bll dt - ﬁlzy dt 4 P o e . ‘e (5)
where: ,
, b . -
Fi= p- =12 . “ (6 -
Integrating (5), we get ‘ 7
7= T, N ()

sincé when ignition start, f;=1, f,=1.
When  shot starts, let f; = fi00 £, = £, then (7) givesv
f’l f20 - 8,2 f10 == B’I ""“ﬁ’z Oy A .o .o . . ER] (8)
The condition that dharge C, burns out first is that when f;=0, f, should
be positive. (7) then gives ‘ _
) F'1> B’2 .. ) o ‘o' (9)
" Similarly the condition that charge C, burns out first is 8’ > £y,
and the condition that they burn out simultaneously is P’y = P’y From
(8) it is easily seen that these conditions are simpler, though equivalent to,
the respective conditions. 7 :
Prfn >Pafi  PBifo<Baf Fifu=Ffe .- .. (10)
used in paper L. : :

Integration for the first stage of burning for the usual linear law (x=1)
For a=1, we have from (2), (4) and (6), for the first stage, |

A A - o
v = m(flo"-‘l) == m;— (fz ""fB) .o ve : ve (1])’
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From (1a), (8) and (7)
F,C (1) (146, £) + k Fy Cp (1—£) (146, fy) — } (y—1) wy v2
— Ap (1) ny € (1—f) (146, f;) + kny Cy (1—f;) (146, f,)

'y €y (1) (14+6, f) + 0, Cp (1—£5) (146, 8,)

| 1y Gy By (L 0 £)  kmy Cy By (L Oy )

— Ap (1 1 1P 1l 2 72 P2

p{l+x n G B (L4+06,)+0C B8y (14 6, 1)
Substituting for £, and £, from (11) in (126) and simplifying we get
dE K (a—v)vdy

¢ KK, a—v) (b+ V) (B—v)

where

(120)

(12b)

(13)

f=1+ % .. .e .o l e -'-: A(14)

kF,C,8,"2

”2 . \
K = FJCAZI A 0 + Az i f+4 B—1 .. (159

Ka—b— 208 1o 905+ T2 Pr o400

(156)
Kap = Pl P KRG (159)
1“{'1 =D (/31 0, B wy + kn, C, B'zg' 0, w, (164,

A . A

Kiag =070 8, (1+0,f)+kn,Cofp(1+ 08 .. (16b)

K, = oy Q1 B2 6y Wy 4 C, Ig'Azz O wy (160)
Koy =m0 'y (14060 + 0, € B (L+ 0,6 .. (16d)
Also A e '

e Wy
P= 2 V& T &V 4
: w; KK, (a—v) (b v)(@—7)
or p = 5 = ——=r : Imn
Al K, (a,— v )E -
Instead of (13) and (17), Paper T gives
df K, (8—v) (by+v) vdv (130)

E T KK, (a—v) (b+v) (3—v) (b V)
KK, w; (a—v) (b+v) (8,—V) (b;4-v)

P= R R ) (b B N ¢ )




e ' INTERNAL ‘BALLISTICS OF COMPOSITE CHARGES

where . V o L LA
& L i, Wy DEE Wyt ottt Cy .
fo s Gy . L kg CoBlaWy i w ok e

K, (a,—b)= ‘l—ﬂfL—l (1—0;+-204fjo) + ~——2—I§E~2—‘~ (1—B,-+20,f5) (18a).

(o Kby =G F kindColag .. oo - (18D)
‘ ConCBW o an 1,C,8',w.

K, (az*‘sz) ="1—‘j&ﬁ-‘1 (1—0,+204f50) + —?_z&*l (1*—-92‘1‘262’?_20)» (18¢)
P Kzaizbg - n]_ClZm + nz(szzo .. . o e o .o (]Sd)
¢ /.Comphatison of {13) and (13a). shows that - :

' B, =8,,8, =28, by=Dby .. . . e (19)

... It is obvious that (13) and (17) are respectively simpler than (13a) and
{7a). The simplification arises due to the cancellation of a factor proportional
- to1—f; or 1 —f, from the numerator and denominator of (12«). This factor

is zero at ignition, but is non-zero from the instant of shot-start to the instant

° .

when one of the component charges is burnt out and this is the period which
corresponds to the first stage with which we are concerned. o ,
" (19) shows that (13) and (13a) or (17) and (17a) are essentially the same
and for some purposes it may be convenient to still use the more complex
forms (134) and (I7a) on account of their greater symmetry; remembering,
. however, that by = b, : I

Tubular Component Charges : Power Law of Burning

. When 6; = 6, =0, (12) gives for the energy equation
P01 =£) + kF, G (1 — ) =F (o — w7V

nCy By + kG Py
L — Ap (1 11 Py 2 Vs P2
{ , P ( +§) n, C; B'; +ny Cp 'y
Using (7), we get -

-‘i[Fleerk%Fz02][1—’fl]:Ap(i+x)+%(vl—-1>w1v2 @y

@)

(" where,

| G Py +1,Cs fy
n, C; Py + kn, Gy f'e .
From (21), (1b), (lc), (2) and (4), we see that the equations of Internal
Ballistics for the composite charge for the first stage are the same as those
for a single charge with

(22)

(i mass C=C; +Cp, .. . .. SRR L (23a)
14 : . .
AR, O+ k %-,sz C,l * (23h)
f nstant F= .
“formfactor 0 B=o .. - e ch T (280)

¢

€?W“‘ e]la.nt d:enSit N 8="““‘*‘T“—;‘» R " - --_P ;';,»7;‘: E= N 23d
“propellant density omEGEs, o w8
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ratio of specific heats ¢y =1 4 A (ny1 — 1) . ee Teirae (23e)
and ballistic size D _ = Do S L P, (23f)

S - B: S S

Accordingly from’ C‘Iemmow3 the fundamental differential ‘equation,
for the power -law, is

2XZ. dX . m(w—1DZ 7 dX \2 dX- <. o
TTa a7 ‘*<1+(3(v—)'n)‘ )“LX‘“:" - @
where
XY—n
X=t¢ 2n n(v—~n) M( E)
A2D? /FO 2——2a g - (59
¥= wopw, ) =P F(‘ > 3-2«

This is the main result of paper II.

When the charges burn out mmultaneously, (21), (22), (23b) are shght]y
simplified and in this case discussion of the first stage of burmng completes
the discussion till the all-burnt ‘position.

Tubular Component Charges : General Linear Law of Burhing ‘

Let the rate of burrlng be a linear func‘clon of the pressure, so that instead
of (4) we have

DG =—B @R B=L2 . .. . g

the solution of the equatlon of internal ballistics can be reduced to the solutlon
of (Kapur?) either of the following equations:

w—1

e

b

YN\ ¥ - : .
(T) [—y &t + &) +yL? (€+28) =8¢+ 24)]
| _ M oy ~
“Tee (7).

YIH ‘2Y” Y/ M,Y- Y, d
or

v vty Uy

Yy +g
Y Y Y
VEL Y ‘_‘:;__1_‘?,) R
+ = ) .o v {(28)
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—1 dE WY o
dY[(Y+ms) i - 9
Y -l: t: S
where _ .
: , p:4 PR N L .
E: 1 +T’ : ' [CPR . e ‘ .. (30)’
Al I U
t FCP 2, tl - O Pl’ e .o ' .o (31)
! = A? DZ" ’ w%
W = 45 L L TR ) B
- L S
—_ gg C e _;\{_.w

“and in (28) the independent variableis (1 — ). Smce this is not present exph-
citly in (28), it can be reduced to a second order differential equation.

The initial conditions for the integration of these equations are
' Al

E:l,F:to—FCpo, —t;oz;-—ll——f——c?Y—_l‘
dg _ : o ) S
Y’ —l,dy e e .. (39)

where p, is the shot-start pressure.

Second Stage o’x‘ Burning

Tor the second stage, the forumla correspondlng to (13a) and (17a) are
(Paper I).

aE _ K/ (' — V) (b tvvdy .8
P A e N (e N At E e B
and ' ‘
_KpK wy @) (' Ev)) 'y — V) (by+v)
PETR, AT (a'y ~v)(b’+v)’c’ - 1
where
r=nt _z 222 L0, .. (35a)
kF, C ‘ a |
K (a — b) = __s;A_z_fiz (1._ez+2ezf,_o)‘ . .. (35b)
y h s -__F:['Cfi‘ Kk Iy Cy Zoy
e (850)
, kn C - o
K’y = 2 | 2A2 Wy 05, L .. .. .. (36a)

’ fat ’ k0,0, > i '
KI (& _b.l = ,a—Z——AL—Z—f}‘(l -—"\62 + 262 fzo) .o .o (36b)
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K’1 ay by =0, G+ knCZyy .. o Ll .. (360)
PRk L S ) L @)
K’y (' — by = 1y Gy P el 2 M O+ 20, 6) . (37b)
K', a,’gb"z.z n, 0'1—]—11? CGZw e (370)

The formulae cannot, in general, be simplified except for the special case
of tubular component charges In this case (12) becomes

FC+kFC(l—f)—4(y—1) wy v2
0,C; + kn,Gy (1 — 1)
0,0y + 00y (1 — 1) -

Substituting for f, from (11), we get a singpliﬁed expression for p of type

—Ap (%) X

(17)

" For the power la.w, for the second stage no exact 1ntegrat10n is poss1ble
Use of a mean value of a variable coefficient is suggested in IT but no method
of evaluating this mean value is indicated. \\ .

Alternatively we may use some sort of an average of o, and ¢, in the
second stage. We may use (236) or

n,C, 1,0,
. -+ -
__1 ¢ S 1 vo—1 »
y—1 n,Cy + 1-1202 : . e (38)

Contmluty of ild— at the end of the first Stage and at All-Burnt

From (17a) and (17b) ; o L
R T e e
in the first stage and - ' .
P dv a""V+ b+v a'z"V—'_ b'2+V+ a—v btv E

in the second sta,ge. . :

‘Nowf"" o
. E___ ]. n,(_l_}; v W1
’EE"'dev I+ xAp’

and’ smce X, p, V are contmuous in crossmg from one stage to the other, so is
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Let-suffix 1 denote the end of the first stage, suffix 2 denote the beginning
of the second stage, suffix 3 denote the énd of the second stage and suffix 4
denote the beginning of the third sta.ge (correspondmg to motion after all-
burnt), then S _ -

1 dp _[lél_)} K(a—b—2v) K (& —D —2v)
[—13 ar:ll p.dv K(a—vy)(b+ vl) K’(a1 — Va)(b' 4 vy) -
K'y(ag — by — 2vy) . K'y(ag — by’ — 2vy)
K's(a;— vy)(by+ vy) K'z(a'z' ""Vz)(bz' + V)

T Ky —vi)(by £ v (a,1 —Vz) (b1 +V2)

Remembering that p; = py = pyz (88y) and v; = v,
A f
: = Bw, = vy, (s2y) N
and substituting from (15), (18), (19), (35), (36), (37) and simplifying we get

(@)~ (&),]

P12 dv J; dv J» ’ .

_CB'w [1—25,] [ L + o . ‘
A F.0, + kFCoZy,y — Hy, — 1) Wyvih,y | D4y DyCeZyyy

_.l..

. I A :
" .0 nyCZ .. . L e @)

where Z,,, 18 value of Z, at the end of the first stage, ie.—

Zy = (L — fp1) (L + O4fan) = - f1[1+ 92(1—-7—~)] | .'L (40)

If k> 1, the expression within brackets on "the R.H.S. of (39) is deﬁmtely‘
positive. Even if k<I, in all practlcal cases, thls will be positive.

(¢) if 6, = 1 i.e. if the ﬁrst charge is in cord form, dp/dv is continuous
in the cha.nge-over from one stage to the other, and since

—_— T e s T e

and p is also continuous at this instant, dp/ds will also be continuous.

(#) If 0,,<<1, assuming the, expression within brackets on the R.H.S.
.of (39) to be positive, dp/dv can change sign from positive to negatlve and not
vice-versa. Consequently, in general, dp/dt is discontinuous in crossing from first
stage to second and a pressure maximum can occur at the end of the first
stage. -
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A‘t the end of the secoﬁd stage, R R M e AR

I: 1 dp ] K'(a’ —b' — 2vy) | K'p@'y—blg—2v) -
P dV K'(@' — vg)(b" + v5) ~ K 282 “Va)( Ehin Vs)

_ K@’y — by —2vy) _ﬂ('l - a

K'5(ay" — va)(b'y + vs) E dV - .

Substltutmg from (35), (36), (37) and rememberlng that vy is th'e veloelty ;

at a.ll burnt 80 that .

vy =
we geb

— 1)t @20—2—““’1< —0p)

[ 1 dp } _

p dv - FIC,_ T K FyCs— 3 (1p— 1) wyvg?
DGy Pawy (L — 85) _ Lk nCyP’awy (1 —6y)

A, Gy + n,Cy) A(n,C" + kn,0,)

After all-burnt from 1(a), since z,=1, 2,=1

n,¢; -+ k nye,

FiC; + k FoCp — 5("’1 —1) W1V2 AP(X +l)

046y + N0y T
so that .
L a =——E("/1——1)fzo~ _li]
[ p dvly FOC H+EkFC—3y—Dwyeld LE dvly v (41)
Since T
m 1 d 1 4d A
0 Lol ] e e
el
Lp dv p dv
. 2W1 kF2 Ny
= (1 —10) —=C, [F101 + kFy0y — 3(11 — D)wyvg? + 10,Cy + n,Cy
kn2 2 V 5

n101+ kngﬂg] R .. . .L. ._ .o (42)

 (3) If 6, = 1 ie. if the seeond charge isin cordform, dp/dt is con’ﬁmuous
at all-bamt posu',lon >l

(u) If 0, < 1, assuming the expressmn Wlthm brackets on the
RH.S. of (42) to be positive, we- ﬁnd that in" general dp/dt is
discontinuous at all-burnt and since dp/dt can “change frOm '

©, .. positive to nggatlve at all-burnt-a pressnre maximum can. arise
here. : S
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Maximum Pressure

Case a—DMaximum Pressure in the first stage of burning:

The conditions obtained in I are—

fm wl'v P . S

?7 Iy L) .- .. ... (43a)

fzo wy V )
and 27 > 4@, .. e (43D

where vz is the velocity at which the expression for dp/dy in the

first stage vanishes. We note that in virtue of (10), the two conditions are
not independent. If charge C, burns out first, the second condition is implied
by the first. Similarly if charge C, burns out first, the first condition is
implied by the second. If the two charges burn out similtaneously, the two
conditions become identical. ‘ :

€ase b—Maximum Pressure in _the second stage of ‘bwhing—

The conditions obtained in I are—

a7 = A 21 ° . .. . .. (440
B ;

f2 Wi V__ ' |
A > A & . .. S .. (44))

where Vi3] is the velocity at which dp/dv in the second stage vanishes.

The first condition implies that at the instant dp/dv vanishes in the
second stage, the first charge should be just completely burnt out, but the
first charge is burnt out just at the beginning of the second stage.” Thus
conditions (44) are the conditions for the maximum pressure to occur at the
beginning of the second stage. Out of these only (44a) is independent as
44(p) will be automatically satisfied if (44a) is satisfied. If the maximum
pressure is to occur in the second stage proper X

A flo A f20
2 M v, — 2
Wy ﬁ,l ‘ 2l W ﬁ’ 2
or N ‘
fio Wy V_ foo _
# < FTm < 7 - .. (45)

Case c—Maximum Pressure at all-burnt—

The conditions for the case of non-simultaneous burning out of component
charges are obtained in I as
1, w.
P = A Bl e (46)



" DEFENCE SCIENCE JOURNAL = - 17 155

fop W, ’ : :
—B%- = —AL Vi3] e . v.: (46D)
~ but " these two conditions .imply o
flO — fa
B B

whlch is premsely the condition for the two charges to burn out szmulmnetmsly,

The fallacy appears to arise from the fact that at the instant when dp/dv
vanishes in the second stage, both the first and the second charges are required
to burn out and this can only happen when the charges burn out simultaneously.

Thus conditions (46) have to be replaced by

; o | : )
_é%_ _11_ Vi = 7:‘;— N ()|

But even these are not strictly correct; for the maximum pressure will

dp ’ v .
be at all-burnt if dt = o at all-burnt, as immediately after, we see from

dp . . d . o
(41), —l is nega.tlve. If —‘—L does not vanish in the. second stage,

even then the maximum pressure occurs at all-burnt. Thus (47) is to be
repla,ced by

f10 f50 W - S S
A < e < X vizp - .. (48)

but the first part is assumed to be satisfied as we are taking 01 to be the charge -
to burnt out first. Thus the conditions for the maximum pressure to oceur
at all-burnt are— -

—E?:— < S vm . e e @)

Case d—Mazximum Pressure at  the end of the first stage—

This possibility has not been considered in I, but it arises nevertheless
due to the possible discontinuity in dp/dt at this instant. This can occur
in three possible cases

L ARy ;
@ Ve P'ywy A
.. . Afy, '
(u) V[—2]’ == Py, ‘ L (50)

Af
W) Vg > 10
( ) 2l ﬂ 11 W,
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An  dlternative approack

The'approach of I disclissed above for finding the stage in which the
magimum pressure needs improvement in the-following respects—

(¢) The conditions obtained are expressed in terms of fi00 f3o while
in practice we are likely to be given p,, the shot-start pressure. It is there-
fore, desirable-to express f,y, f,, in terms of- P,.. From (17) at shot-start
[v=o0 P'Z__Po’ffl] o o I

_w KK, aba, wy Kal K,a,

?o‘“ Al K, & A K, &, |

_ Wy FyCiZyo + kFyCoZoy 1,0, F'y (14-0,£10)+1,CoP 5(14-6,5,)

Al Wi 1,C, Py (146, £30)+-kngCy p(14-8,F5)
but from (8) ' ‘

L
_ 80 that .
Alp, [10,0,8"; (14-0;—0103'1)+kn,Cop’s(14-0,—0,u8",)]

= [F018" (14-0,—0,0P"))+kFyCoB’s(14+0,—0,0.8'1)]

X [1;Cy 8’y (14-0,—0;18"1)+-1,Co 8’5 (14-0,—06, . 8,)]
This is & cubic to determine w and hence . f,,, f,, in terms of P.- When
k=1, this becomes a quadratic in p. ' -

(#¢) The conditions obtained are in terms of and V[2], which are to

be obtained as apprommate algebraic solutions of the equations of the fifth
degree. The use of approximate solutions in equations like (44a) can lead to
erroneous results, v

_ (i) In general, we have to solve two equations of thefifth degree in
order to determine even the stage in which the maximum pressure oceurs.

It may be noted that when ¥1==7,, the two equations are of the first
degree in v and exact solutions are easily obtained in that case. .

In the present case the direct approach in terms of the ‘di'squssion of the
sign of %P; is simp]ér: h - 2
In the first stage L

1 1

. 1 dp 1 1
P dv T Ta—v Ty az—v+ ay—v
N vK,(a,—v) :
" KEK,(a—v)(b+V)(a;—v) . .o (B2)

In the second stage S -

-1 dp 1 1 =1 1

_5 dv T T a = v T b+ v - a'z'f— v + by 4+ v
: . 1 ~1\ R ‘

+ ay—v bV
VK @ — ) (b Y) ,
K@ —v)(b +vK;@;—v) (bp+v) - (53)
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sind- after all-burnt : .
B , / n, C; + kn, G, '
1dp 7 e [ =D+ 30606 4 6y

p dv _ﬁ FiC +kFC—im—Dwv

:At'-'the end of the ﬁfs’é sté,ge; and begin‘ning of the second v = —FTA? fi0
' 1V

and at the end of the second stage and beginning of motion after all-burnt

vy e o -
" *. from (52), (53), (54) we can easily find
-1 dp 1 dp | 1 dp 1. dp -~
[ p dv gy podv Ay [-i’- a—‘;:ls: [-P— *d*V——_L

'Let these values be v;, vs, vs, v, Tespectively, then the following cases
arise (assuming uniqueness of maximum pressure) _ : -

(¢) maximum pressure occurs in the first stage if

vy <o . e .. (55)
(i) the maximum pressure occurs at the end of the first stage if
(a)v; =o0o0r (b)v; >0, v3=00r(c) vy >0,y <O (56) .

(#43) the maximum pressure occurs in the second stage if

V3> 0,V > 0,v3 < O . . (57
(iv) the maximum pressure occurs at all-burnt if :
V>0,V >0,v3> 0 .. .. .. (58)

In case (¢i) and () even to find the value of the maximum pressure, we
have not to solve any algebraic equation, but in case (¢) and (44¢) we have to
solve an algebraic equation of the 5th degree in v. ‘

When -, =¢, uniqueness of maximum pressure has already been
“established Kapur®, Even when ¢, 5= ¢, We expect. the maximum pressure to
be unique, though it has not yet been rigorously demonstrated that it will
always be so. Actually from the above, the condition that there is a pressure
maximum in each stage is ’

(V) vy <0,v5>0,v3 <0 . . . (59)
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