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ABSTRACT

Semi-theoretical expressions for the corrections to be included
in the Range Tables for rotation of the earth have been deduced
and numerical values for 25 pdr., streamlined projectile fired with
super charge have been calculated. The expressions are in good
agreement with similar attempts by other workers.

Introduction _ . .. v
When a particle of mass “m” is projected from the surface of the earth,
the forces acting on it are . . ~ B

. > .
(@) mg, the force due to gravity. -
> - > - .~
(b)) m V F(v), the air resistance corresponding to velocity V. In the

v i N ~
standard notation the air resistance is expressed as V2P (v/a) x 10/C,
- where .the constant C is the ballistic coefficient of the projectile,
and P (v/a) is tabulated in 1940 tables.

> > T -
(¢) 2 m [vX «)], the Coriolis force.due to the rotation of the earth where
o is the angular velocity vector of fotation, pointed towards the

. . -5
North Pole and its magnitude is of the order of 7-3%x 10 radians
per sec. ' : ' .
> > > _ >
(d) m [ roXe ] X o, the cehtrifugal force, where r, is the radius
vector of the projectile from the centre of the earth.
(e) Stray forces due to wind ete.
Owing to the smallness of the magnitude of e, effects proportional to
o? such as those dueto centrifugal force can be neglected in comparison with
other forces mentioned above. Hence to a first approximation, neglecting .
the effects of wind, centrifugal force and curvature of the earth, the equation
of motion of the particle can be written as

>

. dv
- dt N ‘
and the prescribed initial conditions are given as V,, the velocity of projec-

tion; o, the angle of projection; A, the latitudé of the place of firing and B, the
azimuth of the line of fire, For |w]=0 the equation (1) reduces to

>

dv > > ‘

a-.g-_.—--g-—nVF(V) e e .e oo oo (2)
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= —g—VE() + 2[0 Xv] . . - (1)
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Solutions of (2) for given values of V,, « and C have been obtained by
various numercial- methods and numesrical values of R, the horizontal range;
V., & 0, the striking velocity and angle of descent; T, the time of fall gtc..ha.v,e
been computed for different values of V, o and C. These values are available
from the Range Tables for particular guns.

If analytic solutions of (2) were available, solutions of (1) could be expres-
> .

sed in terms of those of (2) treating the term containing « as a small pertur-
‘bation. These being not possible, attempts will be made in this paper to express
the solutions of (2) by approximate analytic functions, agreeing with the nu-
merical solutions within reasonable degree of accuracy and: then to express the
solutions of (1) in terms of these approximate but analytic solutions.
_ Approximate solutions
Formal solutions of (1) and (2) can respectively be expressed as

. t t
i a ~ d -
wo={[n—t ST+ f[oxF]T e @
and ° ° ‘ »
" t
' i ds
v0=|v.—¢ Tp’]‘*’(t) G e )
with °

Horizontal component Vx at any time ¢
Horizontal component Vox at t = 0

From equation (2) it can be shown that ¢ (t) continually decreases with time
“t”” but at a decreasing rate. The best analytic representation for such a func-
tion is of the form ' ’

e =

1)
Exp. [—2 (Apt?)] , Ap >0,n=1,2 o .. oo,
n=1 . . C

For larger values of “t”” the behaviour is more akin to exponential function and

as a compromise between accuracy and simplicity, , (t) can be replaced by

ae~b when ¢ is large and the constants a, b depend on V,, « and C..
Validity of such an assumption can be tested by evaluating values of R, T

V & 0, the horizontal range, time of fall, speed of striking and angle of

descent from this approximate method and comparing these values with thosa

given in the range tables. Thus from (4). ' '

(Vs)x = Vox 4 (T), k
T ;
dt . h» . .
vo#(tanm + tan 0s) jg = [ o)y - e e (B)

Riv = [T, @) dt,
-}

T t
R tan « , dt
a,nd . Y e f . t ( —) dt.
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—bt
If ¢(t) is of the form ae ,

—bT
(v)x=a.e Voz,

Vox (tan o + tan 6 )/g = (eb‘T—- 1)/ab, .. . .. (6)
Ca —bT A ’
’R/Vox == —-;6—[1 —_8 ],
—bT

R tan a/g = %—[T——l——;— ]

_ Eliminating ‘a’ and ‘b’ from the first three relations in (6) it can be shown that

5 — Yox(tan 6s + tan o) (T — Vox tan®; ) 1
gR tan o ' ' - -

Values of A when Ve, Vs, 6, T & R are replaced by their corresponding
range table values can be evaluated (see column IV of Table 1). Vahdity of
replacing ¢(t) by the exponential function can be justified if X differs little
from unity. Alternatively, if values of a and b are chosen suitably such that calcu-
lated values of R, T, Vs and §are found to be in close agreement with the
range table values, the method can be justified for adoptation in calculating the
effect of perturbation due to the rotation of the earth.

Values of a, b and X for 25 pdr. projectiles fired with super charge and at
higher register have been calculated with the help of relations (6) and range
table values of R, T, Vs & 6s, Departure from actual values are expected to be
maximum for this values of V_ and angles of projection. From column IV of
Table T, it is found that X is near about unity ‘throughout the whole range
of angles of firing. For lower values of the velocity of projection, the agreement
18 still better.

 Effect of rotation on the trajectory

The solutions of the equation (1) with the perturbing term can new be
expressed easily in terms of the constants a, b evaluated from the solutions of

>
the unperturbed equation. Since w is small, the function V occurring inside the
' L
integral of the formal solution (3) can be replaced by v (t), the solution of equa-

- .
tion (2). Let p and T + AT be the radius vector of the particle and the time
of flight for the horizontal range when w7<0. Then _

T+ AT ¢ t 4 _ :
:(T—l- AT)=f{ [30--; %f}r [2 f ox (30-—g %)d‘o}] b(t)db

< T AT, 2 X R D) — 20 X G &M - (7))
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where r(T) andV (T) are the functions for unperturbed equation representing

the radius vector and the velocity of striking for the horizontal range and \
. N\

; --bT R—v T

[ t t)dt— bz[l—-(l—{—bT)e ]—.W’

dt (avox + vx ) T — 2R
¢{f s (f )} dt = ab Vox i
a = gR/Vox [tan Og -+ tan oc) Vx

_ N _ gR — v [tan o 4 tan 0]
b=[a — Vs Vox] [[(R/Vox)] = = Rvy [tan & | tan 6]
. Values of £, (T) and f, (T) with Vo= 1700 £. s., and

« = 46°26, 55°9', 62°10", 65°42" & 69°56' for 25 pdr. stream lined shells have
‘been calculated and entered in columns V & VI of Table 1.

As «, ) and B represent respectively the angle of projection, latitude of -
the place of firing and the azimuth of the line of fire,

©x == 0 COS A COS B, vy =<osm)\, w, = €08 A sin §,
Vox = Vo €08 &, Voy = Vo 8iD &, Vo = 0,

gz = sy 8y =8 g =0,

(Vs)x = Vg CO8 9S:,(V's)y == Vg 8in Oy, (vz)z = 0.

Breaking the solution (7) into components and simplifying, it can be shown that -
20 v,

AT = — =

fi(T) . cos « . cos A. sin B;

AR = 2 ¢ cos A sin B [gfﬁ(T) _ Yecosle=0) g ]
o sin O
and D = 20 cos A cos B [v, sin « £;(T) — gfy] — 20 f,(T) . sin A. cos «. .. (8)
where AT, AR and D represent respectively the increments in time of fall, hori-

zontal range and the lateral displacement. D is to the right in the N. H. and vice-
versa,

TABLE I
Q.F. 25 pdr. Streamlined shell
Angle of firing a | b P £,(T)

46°26 -806 -0105 996 880 20482
55°9 ‘ - 826 <0103 988 1093 30027
62°10/ 835 -0097 -986 1255 41215 -
65°42" Co.] 87| 0094 | 984 | 1333 44099
69°56’ ’ 844 -0093 9771 1411 | - 45723
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