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ABSTRACT

A method is proposed for calculating the bore resis-
tance of a projectile by assuming as given the pressure-
space curve. Applying this method to the Le Duc and the
isothermal systems of internal ballistics, it is shown that
these systems imply certain physically in admissible features
at the beginning of the motion.

Introduction

The equations of ballistics at present do not involve the resistance to the
motion of the projectile down the bore explicitly, though such a treatment
has been attempted by a,ssummg the nature of its variation with the gas pres-
sure or the shot travel. Here is introduced a method of determining the nature
or form of the resistance by inserting it explicitly in the equations of motion
and state. The most general case shall be only outlined, while particularizations
will be made for the complete solution.

The general equations to start with are:
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where Q is the resistance down the bore and the other symbols have their
usual meaning.

Obviousiy, with the introduction of Q, an extra relation binding the varia-
bles is necessary so that a unique solution may be possible still. The normal
approach here would be, and has been, to assume a relation between Q and p
or x. This determines the solution umquely The approach considered in this
- paper is a semi-empirical one. The experimental pressure-space eurve is made the
starting point for an analytical treatment.

Suppose the pressure-space curve plotted experimentally for a certain class
of guns is given the best fit of the form
p=p(e) - : @)
Then the only possible form of Q which can ensure the Vahdlty of (2) can be

determined thus.
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The equations above are, in dimensionless form,” = ~ =
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But by (1, b) and (3, a) _
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Where the K’s are expressions in 0.

Substltutmg for ¢ from (9 )and for d> from (10), (11) tra.nsforms mt,o an equa-
tion in ¢, £ and ¢ only Using now (3,d), we arrive at a relation glvmg g in
terms of £ or E as -is required. .
Consider, for the sake of sunphcl‘ry, a tubular propellant charge burnmg
* isothermally. Neglecting the co-volume factor,(l b) (3 a) and (3, ¢) s1mpl1fy to
the form , ST : /
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and so (10) is simplified as , Tl
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Rationalising (14) and using (12)
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" Any ¢ — Erelation as given by (3, d) can now be used and ¢ is got as a
function of for & . . . - SN S

For instance, let us a.ssume‘the formula of Le Due- Then (3, d)zi‘é toﬂbe’{a];ei;f:ag
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zvhere A and B are constants. Assuming a linear law of burning, (15) and (16)
ead to I S o
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This result, for all its inelegance, still shows that Le Duc’s system'}is wide off
reality in the ease of propellants with the rate of burning index less than unity.
For a<1 implies ¢ is infinite initially (at & = 1) L R

Instead of Le Duc’s formula, let us assume the pressure-space curve to be
of the form derived in Corner’s ‘Isothermal’ system. Indeed that has been -
derived from equations not involving the g-terms. Still, 9 being small. ‘let us \
accept the p-x relation obtained there as a good approxirhation to reality. The
relation, for tubular charge, is got by combining his pre-burnt p-f and x-f

equations, in the ferm. ; ‘ v e
log” .
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This having b%en derived on the basis of a linear law of burﬁiilg, wismade unity: :
in (17) which is thén combined with (18) to-beget ‘
q=¢—(L*}2M)¢ . el .. (19)
¢ being zero initially by (18), initial bore-resistance is obtained as‘?,'_n_egativ.e
quantity. This shows the discrepancy of Corner’s solution from physical condi-
tions at the initial stage. : - ;
Even in the absence of an exact equation to fit the pressure—space eurve,

one can study how the shape of the curve restrictsin a general way the possible
forms of bore-resistance. For instance the most general pre_)pertigs‘of 3 pressure-

space curve may be expressed by the conditions ~ ,
dg/dg = o for some value Em of & .. S .. (20) -
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Now obviously it must be possible to combine (16), (20) and (21) and derive '
inequalities binding ¢, ¢ and & . - e
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