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- ABSTRACT

In the present paper the system of equations for the
Non-Isothermal Model for a H/L gun has been developed
and from this, the systems of equations for Isothermal and
Non-isothermal models for orthcdox gun and solid fuel
rockets have been deduced. The Non-Isothermal Model
for H/L, gun has been integrated for a tubular charge.
For isothermal model, reduction to an equivalent non-
leaking problem has been discussed and the . partially
non-isothermal model has been integrated for the linear
law. . After all-burnt modification needed in Corner’s
energy equation is obtained.

Introduction _

Corner’?? first discussed the Internal Ballistics of a High-Low pressure
gun. He assumed the temperatures in both the chambers to be the same and to
be constant throughout the burning period. After all-burnt, he took the varia-
tion of temperature into account, but in writing the energy equation, he
overlooked the energy passing from the First Chamber into the Second, and
thus his energy equation and the subsequent integration of the equations in
this case, require modification. : '

Later Aggarwal® discussed the Non-Isothermal model for the H/L gun.
However his model was not completely non-isothermal as much as he took the
temperature of the First Chamber to be still constant, and allowed for varia-
tions in the temperature of the Second Chamber only. ‘

Even during the burning period, the isothermal and partially non-isother-
mal models are not completely satisfactory, in as much as they require a
. posteriore justifications by comparison with either more exact non-isothermal
models or with experimental observations. But after all-burnt, these models
break down completely, as apparently the temperatures of the two chambers
- decrease, since no more gases are produced by the burning of the propellant and
- there is at the same-time an increase in the available space for the gases.’

It is proposed in the present paper, to discuss a model which takes into
account the variation of temperatures in both the chambers even before ‘burnt’
and to obtain the modifications necessary in Corner’s theory after ‘burnt’.

It will be seen that both Corner’s isothermal and Aggarwal’s partially non-
isothermal models follow as particular cases of our general model. For both
these models, the problem of reducing the equations of First and Second
Chambers of a H/L gun to those of an equivalent closed vessel or an equivalent
- orthodox gun, have been studied. An altermative method of integrating the
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52 e THE INTERNAL BALLISTICS OF A HIGH-LOW PRESSURE GUN.

equations of Internal Ballistics for the isothermal model is given; while the

equations for the partially non-isothermal model have been integrated for the
Linear Law. ' A :

The Fundamentai Equation ‘
Tﬁé figure ]jélow' gives the basic diagram for a H/L gun.

4

FIRST CHAMBER SECOND CHAMBER
r\“ .
e
NOZZLE OR
A PLATE WITH HOLES

Fre. H/L GUN

At time ¢, let a fraction 2 of the charge mass C be burnt and let fractions N and
z—N be present in the two chambers. Let p;, p, and T;, T, be the pressures and
temperatures in the two chambers whose capacities, when the shot is in its initial
position are K;, K,. Let 7 be the covolume per unit mass, S the area of the throat
of the nozzle and A the cross-section area of the bore. Then we hiave the following
equations for the Non-Isothermal model for the H/L gun.

Equation of State for the First Chamber: A
Ha :
p_l[Kl— Cd—) --(m] ZONRT, ... e (D)

8
Equation of State for the Second Chamber: o ‘
D, [yt Ax = O(z—N)n]=Cz—N)RT, L e
where x denotes the shot-travel. ‘
Equation of Continusty:
dz - dN P8 : : ‘
—é{;;"'—d{:—'_i_'('}iy%:ﬂ - .. G ®)
where ~
v+l -,

=EDE L L e
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~ Here we have assumed that

(‘V-I—l)v— D L . (5)~v

If Pe/D; i8 greater than this critical va.lue, we shall have to multlply the

last term in (3) by a suitable back-pressure factor calculated in Corner®. This -

would be equivalent to decreasing 8 by a suitable factor.

Rate of burning equation:

D _‘E. L Bp, | (Restricted Liﬁ§9;;7Law) ‘5- ‘.-. RS ()
or D ditfz— ﬁ(p1+i)°)‘ (Lmea.r Laﬁ)- e e m
or D '(;f ﬁpl (Pressure—mdex Law) ... A .. (8)
\‘Form-Functwn  ", A e o .
" z= (f) (general form-function) A '~ e 9)
or z=(1—f) (1+6f) (quadratic form-\ﬁmctlon) Deed (10)

or z=1—f (tubular charge) = .. cel e . (11

\ Equatwn of Motion of the Shot:

Assuming that the conventlonal Lagmnge s corrections for the orthodox
gun apply, we have

g d2x dv dv. o
‘ Wﬁdtz Ww,¥ = W2&€~AP2 o .. . (12:)v »
where W,=W;+{C .. e L)

W, being the effective mass of the shot.

Eqwmon of Energy for the First Oha/mber

(/) In time dt, a mass Cdz with mtemal ‘energy CdzC,T, enters the
gas. Let 8T, be the change in tempemture of the first chamber
due to this additional gas, then -~ -

Cdz [Cy T,=CN, Cy 8T, 4 CdzCy T] . .

d , - :
e 8T1=FZ(T°——T1) e .. . (14)
" (@) Tn time dt, a mass C(dz—dN) escapes through~ the nozzle. Since the
expansion is adiabatic, we have, if AT, is the change in temperature, -
due to this effect and p is gas dens1ty in the first ehamber

dflog Ty) = — (y—1) og (._ . )

o AL _ 1 Ap
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Also __A_p = ——-—dN-—dz

T, = (y—1) (1+4-¢) \. N - . (15)
where €= JL
o l1—=mp

The change dT, in temperature due to both the fs.ctors is:
dT, = 8T, + AT,

—(To--'r1 +—1(;y—f1) (145) (dN—dz)

dN
or % (NTJ ) To’&]}"“[‘V’H‘Y“‘l)s]Tl dt E)

Usmg(3),1tg1ves = : .
(NT )13 [v+(n,——1)s ' Pl(mg )* Lo

or neglectmg the covolume term

= (NTI) T, (317; R "*Spl (RT1 )*

' Bnergy Equation of the ﬁrst and second chambers taken together
(4) energy added to the system in time dt :

CR dz .
y—-l T % dt el

(1) Work done on the shot = Ap,dx.

(%) Increase in internal energy — ‘V-C—_ljfd[NTl—k (sz)TZ]

CR
. f;—‘— d [NT; + (z—N) Ty} -
CR ., dz U
= To dt dt —-Ap2 dx , T

a. .
701' T [NT1-+(Z—'N) Tl .
__‘ dz ry--1 dx

| =T, T CR CR Ap2 dt - . (19)

 From (12) and (19)

5 INT, + —N) Ty)

A gl d [zl .
-ng-itEwgi[(&E)] 0 -
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which on integration gives : S ik ’ ,
] e
=1}W2(at—) @)
.. which simply expresses the fact that the total change in internal energy of the

" two chantbers till time t is equal to the kinetic energy imparted to the shot.
- If, further, heat losses, are to be taken into account, (20) can be written as

T, z—NTl—m(z-—-N)'l‘2 : 3 7 o
dx \?2 - ' i '
=_%—@I—{Wg 71?) IR T (1)

where g—1 = (9 — 1) (1 -+ X) . .. L@
where X, assumed constant, is the ratio of heat losses up to any time to the
kinetic energy at that time.

Summary of the Fundamentol Equatwns‘

C(1— .
CPy ‘[Kl—- (8 2) — CNy ]‘——,— CNRT, .. (1)"‘»
ps [ Ky + Ax—C (z—N) 9] = C(z—N)RT.. .. S )]
dN | 8p, _ ds _ |
dt +0vﬁ1— dt e .'.‘ e .e . . (3) »
D

T = —’ﬁﬁl C e . .. .. (6)
L= (1) R
Wa dtz = A.p2 . ) .. .o .o (12)

dz
T, & — [,,,4.(.',,_1)s 48 PW—- 2omy.. .9

A . B _ ax \a
T, z—NT, -—-(z—-N) T, =% CRl Wa di ) - D (21).

Inbegratmn of the equat:ons before All-Burnt ior a Tubular Gha.rge

For simplicity, we consider the case of a tubular charge only, 50 that
-0-= 0 and (10) reduces to (11).

Also we substitute

T, T,
. RTo =N, —T—1=T1 [ T = TB : o .o .. (23)
$SD" . . -SD

and -

BCVRTT Bc\/——-— q-) .o - . . (24)
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so that Ty , Ta are the “reduced” tempera,tures and Tl, Ty a.nd zﬁ are dlmen-
sionless. The basm equatlons then become

Px[ K, — 5 — ONy ] = CNx 511'1 L e

- pa [Ea+ Ax— O(I—f—N)n]—C(I——f—N) n 'r, .. (28)
dN SV S SRS en
VT, ® T T

o df af Adﬂ; o .i'"’, , ;
—_ “a%‘ ‘YW '\/T1 'Et— = ) (NT5-). e TN e R {(28)

7_1 [l—f—N'n ——(l—f—N T, ] %Wz( ) . @

d2x

W, Frry ‘= Apy o @ ’(30)

From 27 and (28), on ehmmatmg g’:

i ( 1 —2)
! \/'1‘1 .
N I—T— 1) Y VT,

~ _an, (-9) e
S WE t9 WE—p -

where

a—f=1% -1 . e .. (339)
I
Integrating  * e
N =K (/T + a)—4 (\/'1‘1 — B)—B 5 y e
where K is a constant and L e S e
A+B=2 .. ... . L (880)
Af—Be=2Y e (339
From (27) and (32) - .
Ed%— = (v +“)(§-/T1.—— B) -{v S ST (35)

Ce L d= K(VE +a)loA (Y — )b T
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Tntegrating =~ .-

ar, . ,

f—f =K [ —— X s
[ (VT; + «)HA (YT — B

190

%
- 2udu
= (u-]—ocl‘*‘A (u — p)I+B
- ) P
so that f canbe e:gpres_sed as a function of Ty, Knowing Nand f as functions
of Ty, (25) determines p, explicitly as a function of Ty,

(36)

" From (31) .
D 4t (vIr+ o) (vTi—
i 1K1.—_0F_\_/.T10N,,B) .. (37
i ) 8

From (37), we obtain t as a function of T,. From (26), (29) and (80),

o | ‘ 1 W, dx [
2 [ 1 —f— NT, ] . [K2+Ax—-cn(1—.f——N)]

7'—.1 . )
dx  \2
— %’ W2( -a—ﬁ— ) ) e e (38)
Now since _ '
= &
] a6 aT, A ,
dx @ ( 4Ty Y dx  d°Ty
dgg ~ dTg2 \| dt dTy ds® |

from (33), (35),‘(37 ) and (38), we get an ordinary differential equation to get
» x and TT-T ( or ) as function of Ty,

(29) determines T, as a function of T, and finally (26) will determine p, as
‘g function of T;. ' '

Thus we have been able to express all the variables in terms of Ty, by two
simple quadratures and the numerical in tegration of a- differential equation of
the second order. At this stage, we make the following observations:

" () For most normal H/L guns, Y lies in the neighbourhood of 5. Also
" for most modern gun propellants, ¢ lies in the neighbourhood of 1:25. For -
@ =0-5and 4 = 1-25, (35) gives « = 1-064; p = -939, A =1-56, B= 44
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For most normal H/L guns, the va,lues of «, B, A B will lie isi the neighbour-
hood of these values. ‘

(#) The small variations ofy from 1-25-are not likely to eﬁ'eet the internal
ballistics appreciably.  Thus it would be advisableto take y = 1-25 and to
tabulate N and f—f, once for all as functions of T.  -:

« for
Y o= 40, _'45, -50, -5b
K = .05, -15,--20

- (1). K, £, are constants to be determlned elther from assumptlons of a
nozzle-start pressure and a shot-start pressure or better still by actually ﬁttmg
the theoretical results with the observational data.

T, , .
(w) From (35), we ﬁnd that —— d 1& pos1t1ve and singe f 1 is decreasmg, this

df

implies that Tl decrea.ses steadily from its initial valde unity (or very ﬁea,r it).
’ d

When T, = P2 L vanishes and after that Ty would remain constant till

all-burnt; but (36) shows that 1f T, attains the value R2, the mtegral in_(36)

becomes divergent for the normal values-of A and Bin H/Lgun&and f vanishes < .

before \/ T, reaches the value P. Thus vn normal H|L guns, the temperature in the

_ first chamber falls steadily, but it never attains its lower limit which is about 88 per-
cent of the ambient temperature. In a sense this provides the Justification for the
success of the Isothermal Model and it gives us greater conﬁdence in thelr use.

(v) From (32), since VT, is greater than both B and W, a7 is ‘always

negative, but since T, is decreasing, 4t shows that N will steadily tncresse til]
. all-burnt and as the Isothermal Model shows it -will atta,m the value of about - 5
" at all-burnt.

(vi) From (28)

d af = —
@ (NB)=——g (1—a ¥yT) - = -

For y=1-25, ¥ = 5,1 > +/T; > B we find that —d (NT)) is a,lwa.ys‘

positive. Thus while T, decreases and N increases, NT, steadlly increases till
all-burnt. Thus in normal H|L guns, the internal energy of the gas nthe If’wst
Chamber goes on steadily increasing.

(vit) If K,, is sufficiently large so that effécts of change of volume due tO
the burning of the propellant and of covolume 7 can be neglected, then from
(25), p, is proportional to NT,, and since NT, increases steadily throughout the
burning period, p; will also steadily increase and the maximum _pressure in the
First Chamber will occur at all-burnt.
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(vi#3) In general from (25), (27) and (28)

ai-‘[{Kx-Q’— —om |
- { [Kl__._cm,] [—1+vevm ]
+ NT, % + NT,Cn ( v )} . (39)

For most propellants v is very nearly equal to - 8 . Using this approxx-
ma,tlon, we have, if B denotes the suffix correspondmg to all-burnt

o [K ——CNB'r)] [dp1

[K _ Es_NB] [——1+'y\l’ VTT,';]

C Y
Ng T - e
+ Nz Ti,B 3 VT],B

= K; [ —1 + ¢ {4/T1p ]
N
4 s

Ya/Tis+1 — o9 §4/Tis|
= ]
K [K — Ny | [dpl]

= [1 + 9¥Y /T ] + K, [1—-(7—‘1)W\/T1'B ]NB

Or

For most normal H/L guns; v =125, W= 5, 4/T.p lies between ‘9
and 1 and N lies between -4 and -5 and therefore for normal densities of

. dp,
“+ . loading, df will be still negative at all-burnt. Thus in general, for a

tubular charge, the mawimum. pressure will alwa s occur ot all-burnt.

- () The value Ty, of T, at all-burnt is determined from (36) by putting

f= " Knowing T,z we determme Ng from (34) and then p),p is determined
from (25)

_ CANT,.p
RS A

(39) then determines the éign of % at this instant. If it is negative, the -

maximum pressure occurs at all-burnt. If, however, it comes out to be positive

. dp, C S
by putting al%’- = 0, we determine the value of T, at which pressure is
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maximum and from (25), we know the value of the malximumfp’réssure. In
eneral, however, since p;, will have to be tabulated as a function ef Ty, the

table will itself determine both the value of maximum pressure and the value

~ of T, at which it ocours.. : : i

The Tsothermal Model A , o

_ In this section, we discuss the Isothermal Model as a particular case of i

our more general model.

The basic Equations | : , y
Tn the isothermal model, a mean temperature of the propellant gases in
both the chambers is assumed, so that RT, and RT, are to be replaced in our
“equation by their mean value A This reduces the number of variables by two
and at the same time two of the equations viz., the energy equations of the two -
chambers haye to be dispensed with. o " e
From the system of equations. I, we thenr get the jpllqwiig equations for
this Model. S T '

P [Klf— O(I;Z) —CNn]:CN?\ .. .. (40)5
p, [Ky+ Ax—C (z —Np]=CEz—Nr .. L4
T 0\/‘;' = .. .. .. (42)
WZ%%E —Ap, - e . (43) pTIL
D—a—t— :“‘ﬁpl .. . e (4:4:)
L= (=D (e e |
or z = ¢() 46) |

These are the equations for the Tsothermal Model first (;btainé(i b‘y Cofn;srli :
He discussed the solutions of these equations for-the particular case 0 = o
Later the solution of these equations was given by Aggarwal 45 for 0 = o and
for the form (46). C : : Tt e
Aun alternative method of solution -
Here we give an alternative metho
which is comparatively simpler.

From (24), (42) and (44) '

a of solving the system of equations ITT, -

=N+ ¥ (1) (4"
o from (40)
Cal H— v 1—9) o - Pje‘(:f») ‘-: (48)

I

P1 — ¢ C NPT,
Ky—5 T ~5-<p(f)‘—-0w(f)+cn v (1—f) -
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This equation - had been dlscussed earlier by the author and It ha.d been
shown that :

(@) while for a tubular cha.rge maximum pressure in the First Cha,mber'
' occurs at all- burnt; for a chord charge, for moderate densities of
loading, maximum pressure occurs when about three-fou.rths of the
ballistic size has been burnt through®, .

(b)) maximum pressure is unique for the case of COmposﬂ:e cha.rgesx7
Conditions for the maximum pressure to occur before or at all-burnt for -
form-function (45) or (46) were also obta.lned.6 ‘ R
From (44) and (48) - oo e s R AT
D & =—8h ® . . (49)
This can be integrated to give t as a 2 function of f. From (41), (43) and (47)
dx - AWyl —1) '
. W“ a2 K, + Ax—CY (I — ). - (60)
- On using (49), this gives _ : o
d dx ~ACAD? (1 — £)- 1 .
Ir P f "—"‘ = —% .e 1
| [ 1) W, K fAx—oyi—n 7@ - OV
S a second-order dlﬂ'erentla,l equation between x and f. S
For the quadratic form-function (45), on puttmg

— ﬁcj\' 1 b ~ ¢ % | .

. L 53

z=(1—1) ..
(1) becomes

d [ vz — Lyz® dX 7
dZ ]. + Mlz + N1Z2 dZ ]
" 1 14+ Mz + Nz2

(54)

= X — vz 1 — Lz
where . '
Ly = v (55
S o
(~——Cn)(1+6+()v,w) -
M, = - : .. (56)
| K_ﬁ -
Cﬁ(n———) g |
a;-Nz= o .. (6T
v = A<W10‘y “’0) 1+0—9 . e
H , k0o v

]
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(54) is similar to the corresponding equation of Aggarwal, but is not exactly
identical with, it, since our X and », unlike his, are dimensionless. This fact
helps in the discussion of the convergence of the series solution which can easily
be obtained for X in terms of Z.

The comparative simplicity of our solution arises from the fact that we use
f as the independent-variable throughout; while Aggarwal works through the
variable z, and later again introduces f through the variable Z' which is nothing
but our variable Z = 1—f. '

The Equivalent Closed Vessel (for the first Chamber) -
Substituting in (40) from (45) and (47), '

P K — G+ 50— 00+ ) —on — 00 + ot — )]

= OM1— )1 + 0f —w) .. .. .. (59)

For a closed vessel of capacity K’ in which a éharge with force constant
A of mass C', density &’ covolume »’ and form-factor 6’ burns, the pressure
builds up according to the equation

p [K’ — _‘;_ + %(1 — )1 + 0'f) — e'p’(L —£) (1 + e'f)]
= M1 — £)(1 + 0) . ... (60)
Comparing (59) and (60), we see that if & = o, the two. equations would
become identical if : .
K=K, , ¢ = o(l—Y)\
w=n 8 =31 —w) [ . .. .. (61)
Thus the pressure in the first chamber of a high-low pressure gun, in the
case of tubular charge builds up as if it were a closed vessel with charge C(1—)
and density 8 (1—Y¥) and covolume per unit mass, This result was first noticed
by Corner?, '

For a charge with any general value of 6, the two equations would become
almost identical, except at high densities of loading, if

K' =K, ¢'=C01—V), 8 =8(1—¢),n' =7 .. N .. (61)
, 0 ‘

This result i8 of about the same accuracy as that for the Recoil-less gun
established by Corner’ and as in that case shows that o charge which s
degressive in an orthodox gun is much more so in the case of & H/L gun. Actually
since Y is of the order of }, 0’ is almost double of 6. Thus it is not advisable to
use cord in high-low pressure guns and for the same reason the virtues of a pro-
gressive shape are especially pronounced in high-low pressure guns.

If we want (59) and (60) to become exactly identical, it is obvious that a
single charge does not provide the answer. We try a compositecharge consisting
-of two component charges with same A. Let C;, C, be the masses of the two
component charges; 8,, 8, be their densities; 7,, #, be their covolumes per unib
mass and 6, 6, be the two form-factors, We shall assume, without loss of
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generality, that each has the same ‘effective’ ballistic size (ratio of the ballistic
size to the rate-of-burning constant) as the original charge so as not to disturb
the rate of burning equations and also in order that the two component charges
“may burn out simultaneously®. This would imply that the two equations

D, df D, df, .

B] E 1% 1) B a6 =D

. odfy - dfz,
give a T a
or 1—f; = 1—f; = 1—f (say) .o . . .. (61)
80 that .
gy = (1—£) (140,£) = (1—f) (1+06,6) .. . .. (62)
= () (LH06) = (1—0) (465 .. .. .. (63

‘Now the equation coi'responding to (60), for the composite charge is
- c c Cyz :

p {K— 31 - + 3\21 -+ %‘2“‘01’71%—“02 ’7222}
. 1 1 2 .

— {Cy 2, + Cpz,} . T (64
Usmg (62), (63), we find that (59) and (60) would be 1dentlca.1 if
c ¢, ¢C -
K—s=K—g—5" . . e ..
3 -5 (©5)
C,+C, = 0(1—4;1) .. .. e .. (66)
S ma—-w

( C“ﬁ) (%_anz) . . .. (68)

5‘9 —C96 ("“'—01"11) 6,

(__czng) 0, . )

It is easily verified that these equations are satisfied if we choose

K =K, M=M= ee e e .. (T08)
6, =1, - G=—o - ... (ob)
¢, =00 . 02._0(1-4))—00 .. (100)
=5 8(1 — ) L (rod)

‘Thus pressure in the Fizst Chamber of a high- low pressure gun builds up

- asif it were a closed vessel, and a composite charge consmtmg of two component
charges with same force constants, effective ballistic sizes and covolumes per
unit mass burnt in it. One component charge of mass €0 is in the form of cords
and the other component charge of mass C(1 — v )— Cois m the form of tubes,

the dens1t1es bemgs and & ( 1— 6) respectively.
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"If the original charge is in tubular form and the composite charge consists
of one component viz., tubular cha.rge of mass C(1—W) and of densmy 8 (1——\y)
This was the result proved by Corner.

If the densities had been equal, the composite charge would have behaved-
as a single charge with mass C (1 — W) and form-factor
6,206’ 1+[C(1—¢)—Colo_ 6
Co+4+ [C(1—¢)—CH 1—v :
which is the same as the result established in (62). The solution (70d) fails if
6 = 1 i.e. if the original charge is in cord form. The reason is obvious, since no
comp081te charge consisting of cords and tubes can be equivalent to a charge,
which, in this case is, by (62) more degressive than the cord. In this case, if we
want a composite charge we shall have to try components in the form of spheres,
cubes and cords, but the problem is not being attacked here as, for reasons
explained above, cords are not likely to be used in H/L guns..
Actually for solution (70d) to be valid =~ - o e T
1—y >0 ., : ' .. (71)
i.e. in general 6 should be less than £ Thls is conﬁrmed by (62), sincer for N
0 > 1.
The equivalent orthodox Gun (for the Second Chamber). ”Reason for failure.
From (41) and (47) ST '

pe Ko+ Ax— 0y (1—f)n] = CpL—Hr .. .. 7(72)'

The equation of state for an orthodox gun of bore area A chambér capaclty
K’, tubular charge of mass C’, force constant A, densn:y % and covolume 7’ is

. O (1 :
K Ax— 5 4+ S0 oy -] =0na—p .. (1)
The two equations (72) and (73) become 1dentlcal if : o
C=0 .. . .. (14a)
K'=K2—|—(§—¢ S oo e (ub)
=ty L .. ve - wE (740)

Thus the equation of state in the second chamber of a ngh-Low pressure
gun is the same as the corresponding equa,tlon in an orthodox gun with chamber

capacity, K, 4. ;y and with eharge in tubular form of mass c¢ denmty 8

1
and covolume per umt mass ) —}- 5 . Thus the charge mass is about: half chamber

ca.pa.clty is shghtly 1ncreased a,nd covolume per unit mass is nearly doubled

The equation of motion of the shot for the H/L and corresponding. orthodox
gun would also be the same. _
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In spite of this, the reduction to an equivalent orthodox gunicgnltﬁt,»how-
ever, be made since our equation (72)involves which has to be determined from
df S SRR

, D5 =—Fps
for the H/L gun and from ‘ L
A
. MDﬁ_ — Pps

for the corresp(;hding orthodox gun. -

If these two equations had become identical, the H/L gun would not have
introduced anything new in Internal Ballistics. The main feature of a H/L gun
is, of course, that while the shot moves under pressure p,, burning takes place
under a higher pressure p;.° . ,

Partially Non-Isothermal Model.

Bagsic Equations - )
Aggarwal® has discussed a non-isothermal model in which he has assumed
the temperature of “the First Chamber o be constant and has considered the
variation in the temperature of ‘the second chamber only. Thus in our system of
equations I, one variable T, is reduced and the corresponding energy equation of
the First Chamber is to be dispensed-with, In this case, the equations become

pl[Kl—99—8?—”—7()Nn]‘=01\1)_~ L e s . (18) 1
ps[Ks+ Ax —C(z—N)n]1=C(z—NRT, .. (T6)
AN wsp,  dz S
,deJrk__.__C\/;__M_aF ..
&5 ' v
Wz-at—f‘-‘=Ap2 DU . . (18) %
| e B 5
Re—N - =tG—W(F) -
af : S |
_D-a-{_]:—-f’p,” T o .. . (8());
z=(1—f1+06) . . @1 )

These are the same equations as obtained by Aggarwal, who integrated
them for law (80). e N S
Another Law of burning, which is nearer the truth, though more difficult to
handle analytically isthe Linear Law(7). The Equations of the Isothermal Model
for this law were integrated by Kapur®. In the next section, we integrate the
equations of scheme IV for. this law. ,

Integration for /the Linear Law -
“From (7) and (77)
dz - AN ;. Y8 [ Ddf - ]

— -
r—— —

T - @ T/l R® P
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Integrating and using (24)
: R
‘ N=z-—\\!(1——yf)+*¥ —]—)—*po.t .. o .. (82)
since initially t = 0,f =1,z = ON=0 . ee e (83) -

From (7), (9), (75) and (80) % :
b oa ., afs@—va—n+y £ ]
—_— —— =T = P, C

B d K1"T—*C7)‘?‘%'Poﬁ

C | (84)
+(5-on)s OO
For the quadratic form-function (81), we get
_p ot _ (Y {(1 —£) (14-6) — @ 1D+ % p,t}
X P + - C y »
(-5 + ga—na+e
T—,Cn (1—f) (1 4 0f) + Cy ¥ (1 —1) (80)
—Cp ¥ ~—p Pt J
and for tubular charge, R
v ) P
D 4 o —Ha—Pl+C 5= pb

a’{ = P, + - C c . h :
A [K1—-—3“+ (1—1) (—8——07)'+Cﬂ?)..(86)
p .
—Cn¥ <5~ pob ]
{85) and (86) can be easily integrated in finite terms by means of simple in- '

tegrations. For the more general function, numerical integration may be neces-
sary to geb f as a function of t.

' Knowing f as a function of t, (82) determines N as a function of tand
then (75) determines p;, a8 & function of t. :

From (76), (78), and (79) - :
. dzx - . ﬁ
W 22 [K+ s (va—0—v 5 »s)]
—C [\y(l—f)—- n —%— p.b ] o
_ dx \2
—1G-ow(g) @
_ 8ince f is a known function of t, (87 ) gives an ordinary differential equation

dx . |
to solve for x and a as functions of t. (79) and (76) then determine T, and
p, &s functions of t. : T ‘ .
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From (75) : | -
o NN
1 C Cz
K— 5 + 5 O
J 0 Cz- _ 2 1 dpy
- [Kl s3T5 CN”] o

o [K1 — .% + -08-4 (f)] [¢'(f) %% + &Ia%ft—%nl»%éo]

—-[\r(f)-kr(l-—f)+\r—§—p;t] [Svog] - ©

From (84) or (85) or (86) we know f and % as functions of . Substituting
these values in (88) we determine the instant of maximum pressure. Then the
maximum pressure is determined by eqn. (75).

Putting f = 0 in the solution of (84) or (85) or (86) we get the instant of
all-burnt position. : : o
Reduction to an equivalent closed vessel or orthodox gun

Since equations (75), (77), (80) and (81) of this model are the same as equa-
tions (40), (42), (44) and (46) for the Isothermal Model and these are the only
equations referring to the First Chamber, our discussion of the Isothermal
Model remains valid here also. :

The equation of energy for an orthodox gun for a tﬁbular charge is given by
c 1
P [K'— ~;6~—|— Ax—C ('17"—— —E‘ )(l—f)]

SORT(I—) .. e e e (89
whefe T is given by;
¢ R (1—f) (T,—T) =} (y—1) W, ((%)2 . . .. (905
Using (47), we get from (76) and (79) ' '
palKy+ Ax—Cp (1)1 = CY(1—H BT, .. . . (91)
. ) - v y P
and CRY (1—£) (T,—Ty) = } (y—1)Wa (%f—) T

Comparing (89) and-(90) with (91) and (92), we find that substitution
(74) would make the two pairs identical. Thus these substitutions reduce
(76), (78) and (79) to the corresponding equations of an orthodox gun. The
reduction, however, is again not complete as (80) will be different from the
_corresponding equation of an orthodox gun. : -
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Motion a.t‘ter All-Bumt

Neglecting covolume v and puttmg z=. 1 the. equatmns for thls case are
pX,=CNRT, ~ - ... .. - (93)
Pz[K + AX] C(l — N)RT2 ) .. ‘ o ) .. (94)
—_— T e e . ) .o e B oo 95
ds - C/RT, ’ - ( )’
gt- NT, — — """’SPl SR . (96)7
c -
. OB [TO—N11—<17N>T2]=%W2( ) )
=l | o .
W2 5 _-— Apz o el (98)

From (95) and (9(‘;5' o ‘ _ _ TS
dT1 R dN B

or N R
' TpB (NB ) o w9
- where suffix B refers to the posmon of a]l burnt. C o

From (93) and (99) -
: ~I;1 = _{_1 e " =
B NB, Tl,B (N ) (TI,B ) S ,(100)
From (78) and (80) T

& B VR *K;_l_ =T K, VRTI,B N ———-)

Integrating

N Ns
where .
(7 — 1) ¢ S‘\/RTl B ‘
" From’ (100) and (102) o L

0, =

= 2y

1 Tv=T - o
plB [ + ] "~ “ L

a.nd [1+ t;—-tB ]——2 : S _. ;
l’B - 61 e
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‘ From (94), (97 ) and (98)

C T, — CRNT, — W, d% AR
- 1 — [Ks + AX] A _d—tT -

A(w ()
| [Kz—l;AX]W

o HAW»—DWZ( )

3

fACRT —AKlpbB [ t"“t& ]—*"1 - (106)

This is a.n ordinary differential equatlon of the second order to determine

x and % as functions of time, the initial conditions being

dx _ ¢ dx O .
t -——tB y X.= XB dt » "’E—)B .o .o (107)
Mod1ﬁeat1on in Gemer’s energy mmw IR
From (97) at all-burnt_ ’

0
B p o NpTip — (1—83)Tp )
v—1 .
dx : f_ L
—-%\{V»l dt) LT sy
. From (97) and: (108) - '
R

[NB Tl,B— NT1 + (1 — NB ) Tz B— (1 — N)T,]

- [(F) - (dt)] -

- In Corner’s theory (Isothermal Model before burntr) : :
RT3 =RTep=2A Also NB =1= \y .. (110)
80 that (109) gives a - : Ll e

2 [a—rm—a '—AN)TQ‘]‘ e

._ o [( ) ( ) ] (1i1)

Whlch can- a.lso be written as

2 [(1 _NT, — w) +(0— (1—N)Tz)]

(Y- (0] -

69 L
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The corresponding equation of Corner is

5N . dx \?2 dx \? :
2 [e—a—wma]=w[(F) -(F),] - @
Comparison of (112) and (113) shows that Corner had neglected the term

NT in the energy equation corresponding to the energy of the First Chamber.
" He has also apparently not taken heat losses into account.

Thus, in order to get the correct equation from Corner’s equation, we

have to replace ¢ by v and replace ¥ by
1

=1—Nefl —
T B( Ts ) Ts

T \T=T
=1—N y—1
NB( TB) ‘
| t—t - 2
=1 —(1 =1 =B y—1
-1+ )
_ N’ v -
t — t5 \?
(1+52)
Thus (111) can also be written as ’

) .

1 —NT,=1—N

=1 (114)

S ()

Inany H/L gun with all-burnt occurring fairly early in the travel, this error
would make a difference of the order of 15 to 20%, in the muzzle velocity, since
a8 t tends to infinity, the energy that could be obtained by complete expansion

Ca

of the gas would be ¢ by Corner’s equatioh instead of the obviously

correct __—0}— . Asin a typical case the energy extracted is of the order of 30%, of

this amount and as presumably, the energy would be computed correctly in
the phase before ‘burnt’ and as W is of the order of %, one would expect the
square of the muzzle velocity to be not more than 30%, out. Even then this
would be a serious error, specially for H/L guns with burnt early in the travel.
Fortunately, however, the advantages of a H/L gun are associated with flat
pressure-space curves and so with ‘‘burnt” near the end of the travel and in
this case, the error would be comparatively smaller.

Ttis obvious that our modified equation (115) gives the correct value

_0)“ as t tends to infinity.
y—1
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~Another way of judging the correctness of the Energy Equation is to try
to reduce the isothermal model as a particular case of the general model by
malnng qor o approach unity. If this is done in Corner’s equation (113),
it gives (1——N) T, as constant. Since, however, N is varying, it will imply
the variation in T, which shows that the model will not reduce to isothermal

one. If, however, 7 is made to approach unity in our equation (111), it will be
satisfied if T,=T, = constant, as is the case for the Isothermal Model.
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