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Introduction ,

Purpose of Models—Whenever it is desired to obtain the solution of a
physical problem  the first ‘attémpt ushally is to obtain an analytical solution.
In'the analytical method the problem is given a mathematical formulation
leading usually to a differential equation. This differential equation is then
solved subject to the boundary conditions of the problem. Such a solution,
whenever it is possible, is a complete solution of the problem since it determines
all the, constants. involved in the problem and provides further an insight into
the mechanism of the phenomenon under consideration. In most of the en-
gineering problems, the number of variables or the complexity of the situa-
tion makes the application of the usual analytical procedures tedious and may
Jead to a mathematically cumbersome solution. In still other problems the
general laws governing the behasiour; of; the system are unknown and analy-
tical procedures have not been developed. ’

For such problems . dimensional analysis supplemented by experimental
evidence may lead to the formulation of a general law governing the pheno-
menon. However, if a large number of variables is involved, the collection of
data and its subsequent reduction to a general formula may be too time
constming to be feasible. In addition much supplementary data may be
needed to make the range of the resultant equation sufficiently broad to obvi-
ate extrapolation in the majority of applications. In many such Instances a
general formula is not necessary; all that the engineer requires for the design is
an indication of the relationship of the variables fora speeific design or within
anarrow range of variation of the significant variables. Under these circumstan-
ces amodel gives the desired result quickly and cheaply. ' ‘

Definition of a Model.—A model is a device which is so related to a physical
system " that observations on the model may be used to predict the performarice
of the physical system in the desired respect. The physical system for which the
predictions are to be made is called the prototype. The laws of similitude
make it possible to determine the performance of the prototype from tests
made on the model. In order that amodel will reproduce the behaviour of
the prototype it must satisfy certain requirements again based on the prin-
ciple of similitude. Such laws will be developed later.

. A model is not necessarily smaller than the prototype. Actually it may
even be larger. Thus the flow in a carburetor might be studied in a very large
model. In fluid flow problems it is also not necessary to use the same fluid
for the model as for the prototype. The laws of similitude make it ‘possible
to-carry out experiments with a convenient fluid such as water, and then
apply the results to a fluid which is less convenient to work with such as
" Tt is the first part of a Toview article based on material used in a special eourse of eighi;
lectures, delivered by the author at the Indian Naval Physical Laboratory, Coochin iy
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air, gas, steamor oil. The flow of water at the entrance to a small centri-
fugal pump runner might be investigated by the flow of air at the entrance.
to a large model of the runner. In Hydraulics and ‘Aeronautics, however,
experiments are performed with small scale models. In fact the chlef dlﬂi°
culty in Hydraulic models is to make them large enough. : U

Types of models.—Models may be broadly classified into the followmg four "
types: '
(1) True models.
(2) Adequate models.
.(3) Distorted models.
(4) Dissimilar models,

‘True models are models in which all significant chara.cl:emstlcs of the _
prototype are faithfully reproduced to scale. In addition to being geome-,i
trically similar to the prototype, the model satisfies all other restnctlons intro-
duced by the design conditions. :

Adequate models are models from which accurate predlctlons of one ,
characteristic of the prototype may be made, but which will not necessarily yield
accurate predictions of other cha.racteristics.

A distorted model is a model in which some design condition is violated
sufficiently to require correction of the prediction equation. Under certain con-
ditions, particularly where flow of fluids is involved it is impracticable, if not
impossible, to satisfy all the design conditions with a length scale other
thap unity. Lack of availability of suitable materials or specified dimension -
of members may lead to the adoption of two or more different scales. When
the model is distorted with respect to some characteristic, this distortion will -
affect the prediction equation and corrections must be made to obtain -
reliable results. Distortion is usually required in models of river channels;
floodways, harbours and estuaries for which the horizontal dimensions are *
large in proportion to the vertical ones.Insuch cases the horizontal scales are
limited by space and cost restrictions, When these scales result in model
depths and slopes which are toosmall to yield significant results, avertlcal
exaggeration or a distorted vertical scale is required. 8

Dissimilar models are models which bear no apparent resemblance to
the prototype but which through suitable analogies give accurate predic-
tions of the behaviour of the prototype. Thus information concerning the
torsional stresses in a shaft may be obtained from measurements taken ona
soap film and the characteristics of a . vibrating mechanical system may be
duplicated in an electrical circuit.

In the subsequent Section the first three types of. models are consi-
‘dered. Since the main aimisto develop the theory of models as applicable to
ship “resistance problems emphasis will be laid on fluid flow models. The
primary objective is to deduce the -conditions for the validity of
experiments on models and the laws of comparison of models with ~their
prototypes. Such laws can be established if either the differential equation
for the flow under consideration or the expressions representing the forces
acting on the fluid are known, For most of the problems encountered
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in actusl practice such information is hardly available. In such cases di-
mensional apalysis can be used to deduce ~the laws governing the rela-
tionship of model to prototype. With the help of dimensional - analysis a re-
lationship between the physical variables of a problent “dan be reduced ¥
a relationship between dimensionless groups which by their numerical valio -
characterise the type of flow under consideration. For: equal . values of these
dimensionless parameters the flow patterns are similar in the model and the

prototype.
: DIMENSIONAL ANALYSIS

The Method of dimensions .

The method of dimensions had its origin in the Principle of Similitude
referred to by Newton!. Newton applied this principle with reference to the
equation of motion which he had deduced by applying ‘the laws of mation
enunciated by him. Thus in Newtonian dynamics the final velocity ‘v’ of 4 body
of mass “m’ starting from rest and travelling ina straight line for a distance

‘g’ under the action of a constant force ‘F’is given by '

v3=2——s
m .

With réference to this: equation the prinbiple of similitude states that if we

consider a number of different masses such that the ratio %is the same for
: . , ‘ ‘ ,
all, then the ratio —-YS:— is the same for all. Or, aga.iri, if the final velocities

attained by different masses in equal displacements are equal, then the applied
forces are directly proportional to the masses. Newton made frequent use of
the principle of similitude and this appears to have been the first application
of what is known as the method of dimensions.

" More than a hundred years after Newton’s work the subject was exami-
ned by Fourier 2 who introduced two important concepts in the thecry of
dimensional analysis. The first is the concept of what today is termed the
‘dimensional formula’ and the second is the racognition of the dimensional
homogeneity of physical equations. These ideas are so fundamental to the
theory of dimensions that itis worthwhile to explain their significance.

Dimensional formula

Every physical observation has two characteristics associated with it,
the qualitative and the quantitative. The qualitative aspect of an observa-
tion serves to describe accurately the nature of this observation so that it
can be identified sufficiently from other observations. This description of the
nature of aphysical quantity may be given in terms of the fundamental
entities: : mass, length and time. The concepts of mass, length and time were
regarded as fundamental and independent by Newton. They are still regarded
as such and metaphysical speculation has so. far not succeeded in showing

~ that any one of them is dependent on either of the other two. The sciences of
Eelectricity and Magnetism and Heat require the use of two other primary
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concepts such as charge and temperature butitis still a matter of discussion, ;
whether they should be regarded as primary or secondary. In terms of the .

Length
ime

>

fundamental concepts velocity, for example, is given as

or
V=LT- : : i
Thus the physical quantity velocity has a- dimension of 1in length and
—1 in time and its dimensional formula is L7T—1, The dimensional forumula-
for -acceleration is LT — 2.The dimensional formula of a physical quantity
may thus be looked ypon as a short hand statement of the definition of that
physical quantity apd as revealing its physical nature. Itis derived from the
definition of the physical quantity. o ' ' -

The quantitative description of a physical observation is necessary’ to-
indicate the extent or the degree of occurrence and to assist in distinguishing
it from qualitatively similar occurrences of - different magnitude. This quiax-
titative “déscription” involves both a number and a standard of comparison.
The standard of comparison which is arbitrarily established is called a unit.
The number indicates the extent to which the unit quartity is duplicated in
the measured quantity. ' :

The dimensional formulae of various physical quantities are givenin
the following table in terms of Force, Length and Time chosen as fundamen:
tal dimensions. The M.L.T. system also could be- used but it is simpler and
more convenient in engineering practice to use the F.L.T. system. B

TABLE 1

F L T
Mass 1 -1 -2
Velocity 0 1 -1
Acceleration 0 1 -2
Force 1 0 0
Pressure - . 1 —2 0
Pressure gradient. . 1 —3 0
Mass density 1 - 2.
Viscosity .. 1 - —2 . |
Modulus of Elasticity 1 —2 0
Surface tension 1 0

Dimensional homogeneity

Fourier’s second contribution to the theory of dimensional analysis was
the principle of dimensional homogeneity. A physical equation normally
consists of an algebric sum of the two or more terms. The equation is said-to be
dimensionally homogeneous if and only if all the terms have the same dimen«
sions. This principle applies to differential and integral equations as well as to
algebric equations. Empirical equations, however, are not necessarily
dimensionally homogeneous unless they contain all the variables that would
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appear in an analytical derivation of the equation. For example, in the prob-
lem of the dragon a spherical body in an air stream, it might be argued that
density and viscosity may be disregarded, since they are constants for _standard
air. The equation of the drag force R would than be of the form R =f(V, D)
where Vis the velocity of the stream and D is the diameter of the body. How-
over, itis obviously impossible to construct a dimensionally homogeneous
equation of this form, since the ‘variables V.and D do not contain the dimen-
sions of force or mass®. - : \

" Yalue of dimensibnal analysis

* The most important use of dimensional analysis to the engineer
is in establishing principles of model design, operation and interpre-
tation. It helps the experimenter in the selection = of experiments
‘capable of yielding significant information and in the avoidance of redundant
experiments. An application of dimensional analysis' to a physical problem
reduces substantially the number of functionally related quantities below the
_pumber of relevant physical quantities. The whole analysis is summed up
in the Buckingham’s ¢ = — theorem which states that “if n variables are
connected by an unknown dimensionally homogeneous equation, then this
equation can be expressed in the form of a relationship between (n—r) indepen-
dent dimensionless product combinations of the physical variables involved
in the problems”. In most cases, ‘r’ is equal to the number of fundamental
dimensions in the problem. However, this is not an infallible rule, since the
pumber of fundamental dimensions in a problem may depend on the system of
fundamental dimensions used. For example problems of stress analysis ususlly
involve only two dimensions F and L. However, since F = MLT—2, there
are three dimensions if the mass system is used. :

The calculation of such non-dimensional parameters of a physical prob-
lem can be made by the Rayleigh’s® method with the help of the following
example. A liquid of density p and viscosity is flowing witha velocity Vina
- smooth straight pipe of circular cross section of diameter D. It is required to
find an expression for the pressure gradient (pressure drop per unit length) G
in the pipe. .

The pressure gradient G would obviously depend on V,D, pand p
and we can, therefore, write— :

G =f(V,D, 8 1) . . . . . @

The Rayleigh method consists in writing the function f as the product
of powers of the variables V, D, p, p. We thus write :

G = C Vi Dis phs pku .. . . . (22)

where Cis a dimensionless constant and k;, ky, ks, k, are ,nuﬁabel:s whose
~_values are to be determined. The justification of writing (2-1)in the form
.(2+2) is shown in the Appendix. Writing the variables in (2-2) in terms of their
dimensional formulae we have

©o FL— = (LT —1)l Tk (FL— £ T2 (FL—2 T)ks

or, FL—3 = Fhotks Lkt =4k ~2k T — kg +2 kytkq .. .. (2.3)‘; .
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Since equation (2 2) must be dlmensmnally homog&;neous the exponents -of the
fundamental dnnenmons F, L; T must be the same on either side in (2~3).
This gives

k1+k2——4/k3__2 k4~—-—"'3 - X3 R -- : ! . - aw (204)
— Iy +2 ky -k, =0 R . '

There are three equatlons and four unknowns. Therefope, three of the
unknowns can be determined in terms of the fourth.

~In terms of k; we have

kl_‘kl $Ry= 34k ;. K3=~t~1 +‘k1 ; k4_,2 --k1

80 ,that , ‘ .
6=0 _ ¥ VDp )kl. :
o D"P @ -
o D8 VD S AR e
o w0 L L
where q(') is an unknown functmn of the parameters . DQPG and - VD’ ..
B2 Y
' It is ‘easy to verify that these parameters are dlmensmnless
In terms of k,, we have
k1=3+k2 kg——-ka, 3—2+k2 k4—' —‘1 —kﬂ C N
These values give
G = C V3+ks Dhs p2ths p—1 =k
or, :
3 r .
‘ [ ®oo
which can be further written as _ ‘ )
(@) _pG_ VDp ) -0 » ‘ o
? . \ Vgpg 3 H' . . v o . .o »‘ B (2 6)
It can be verified that v’;(; is a non-dimensional parameter.
In terms of k; we have
Tey=1-ky; ky= —2+Kg s ky=ky; oy =1 —k,
These values give, as before, . ’ ] »
D2G VD o
(m( — ’P =0 e e 2])

DG is a.gam a non-dlmensmnal parameter
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In terms of k,, the solution of equation (2+4) is
k=2 — ky; ky= — 1 — ky; kg=1 — ky s ky=k, o
We then have S ‘
‘¢ ) ( DG VD

“XFe Ty T — =0 ) .o .o
V3 0

In this case also

(2-8)

DG
V2p ; .

It is thus seen that in each case the relationship between the five vari-
ables @, V, D, p and p involved in the problem reduces to a relationship between
two non-dimensional independent parameters. The relationship can thus be put.-
in the form

§ (m,m) =0 .. . oo e . (2-9)

where m,, and T, are the non-dimensional parameters. That there are enly

~ two in this problem is a direct consequence of the =—theorent, gince there are
five variables and these have been expressed in terms of three fundamental
dimensions. ;

A rapid method of calculating the = —terms. :

_In this section a more rapid method of evaluating the complete set of
n—terms of a physical problem has been developed. For simplicity the prob-
lem of flow of a fiuid in a pipeé solved in the preceding section has again been,
taken up. The dimensions of the variables involved in the problem are rewritten
in the following table for convenience.

is a non-dimensional parameter.

k k, kg k, ks

G Vv D P M

F 1 0 o1 1
L —3 1 1 -4 —32 (2-10)

T 0 —1 0 2 1

A typical dimensionless product of the variables will be of the form
n=Ck Vks Dka' ghe yls .. .
where the k’s are numbers to be determined.
Writing both sides of (2-11) in terms of the fundamental di;ﬁensions F, LT
.we have ‘ » :
FoLoT =(FL—2 Yo (LT-1 ) L % (FL—4 T2)& (FL—2 T)k
Comparing the exponents of ¥, L, T on both sides we have

(2-11)

k1+k4+k5=0 . .
3k, ey, — 4k~ k=0 W .. (2:12)

It should be noted that the coefficients of the Kk’s in each equation are the row
of numbers shown in (2-10). Such a rectangular array of numbers as (2:10)
displaying the dimensions of the variables is known a8 a dimengional matrix.
The equations for the exponents of a dimensionless product can be written
down directly by inspection of the dimensional matrix. The writing down of
such & matrix is the first step in the evaluation of the m~—terms.
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Any solution of the eqn. (2:12) is a set of exponents for forming the
#—terms with the help of (2:11). The system of eqn. (2-12) is undetermined,
gince there are three equations in five unknowns, and possesses an infinite
number of solutions. In the present case any arbitrary values may be assigned
to two of the unknowns and the remaining three may then be determined in
terms of these two provided that the determinant of the coefficients of ‘the -
rethaining three unknowns is not equal to zero. Let us assume, for example,
that k, and k, are given arbitrary values. Then a rearrangement of eqn.

(2-12) gives

o kytkg= =k ' : T

k3 — 4k4 — 2k5=3k1 —"k .o ve R 2. Ve ) (2 \'13)

2k, +ks=k, , .

The determinant of the coefficients of the X’s on the left of eqn. (2:13)is -~
' 0 1 1

1 —4 —2 #0  (2°14)

0 2 1 : S

Therefore, the eqn. (2+13) are imdependent and ‘the solution is
ka=3k1+k2 } '

X3 - n

k4=k1+k2 . (2 * 15)

ky= —2k;—k,. ‘ :
Tt is seen that the determinant (2-14) is the third order determinant formed
by the elements of the last three columns of the dimensional mattix. Since
this determinant is not zero, the rank of the dimensional matrix is 8. Thisis
the significance of r used in the statement of the n—theorera in section 2+4.
Since r—3 in the present case and n=5 the number of dimensionless products
in any solution of the problem will be 5-3=2. There is no theoretical reason
for picking the determinant on the right side of the dimensional matrix; if
the matrix contains any third order non-zero determinant its rank is 3 and the
three k's corresponding to the columns of the non-zero determinant can be
_ evaluated in terms of the remaining ones. It is obvious that the number of rows
in the dimensional matrix is 3 so that the rank of the matrix can not exceed
three which is the number of fundamental dimensions employed in the problem.
It may happen in some cases that the rank of the matrix is less than the number
of fundamental dimensions. In such cases the value of r is less than the number
of fundamental dimensions and is equal to the rank of the highest order non-
zero determinant in the dimensional matrix. Once the value of r is known the
number of 7—terms constituting a completé set of dimensionless products
of the problem is known as n—r. For convenience it is desirable to rearrange
the dimensional matrix in such a manner that a non-zero determinant of order
r occurs in the right hand r columns of the matrix. In the present case this
rearrangement is not necessary but ifi cases where it is necessary it will be
assumed that this has been done. ‘

Let arbitrary values k,=1 and k,=0 be assigned for the first solution.
Then the solution of eqn. (2-13) is / L

. ) k3=3, k4:1, k = —"‘2
Similarly if k,=0, k,=1 for the second solution eqn. (2-13) yield

ky=1, k=1, ky=—1
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The solutions may be neatly arrange:d in théiﬁat;iﬁ form shown below

k, L kg ok
3 a V.. D . g o i(2+16)
-y v 1 0 FISRTRE: | N - - — I
To 0 1 ol 1 1 ._.1 .

It should be observed that the thu'd fourth ‘and fifth columns in the matrix
of solution (2-16) are merely the coefficients in the solutions (2- 15) for k4, k,,
k;. The first two columns of the matrix of solutions consist of zeros, except for
the ones on the principal diagonal. Consequently, the matrix of solutions can
be written down 1mmed1ately by inspection of eqn., (2-15). Each row in (2-16)
is a set of exponents in a dimensionless product. Accordingly in the present
case the following complete set of 7i—terms is ‘obtained.

GD3p VDp
R
@ w
These are the =—terms corresponding to the. solution (2-5). It is to be noted
that the first variable G occurs only in #; and the second variable V occurs

only in m,. This is an important characteristic of the method It verifies that
the products are independent of each other.

m =

, The procedure outlined above gives a complete set of 1:———terms corres-
‘ponding to the solution (2-5). The set of #—terms corresponding to the solution
(2-6), (2°7) and (2-8) may be found by giving arbitrary values to other k’s

“instead of k; and k,. As a matter of fact infinitely many different complete
sets .of m—terms can be formed from a given set of variables. In so far as
‘Buckingham’s ©—theorem is concerned any complete set of dimensionless
products i3 admissible. What set to use depends mainly on experimental con- -
venience. Buckingham has pointed out that we obtain the maximum amount
of experimental control aver the dimensionless variables if the original variables
that can be regulated each occur in only one dimensionless product. For
.example, if a velocity V is easily varied experimentally, then V should occur
in only one m—term. That z—term can then be regulated by varying V.
Likewise if a pressure P can be easily varied without affecting V, then P should
occuriin only one of the n—terms, but not in the same one as V. :

The dependent variable of the problém must also be considered. Usually
it.is desired to know how this variable depends on the othér variables.-The
dependent variable, consequently should not occur in more than one w—term.

 Since the first (n—r) variables in the dimensional matrix each ocour in
only one dimensionless product, the preceding conditions will be realised, as
nearly as possible, if the following rule is observed. In the dimensional matrix,
let the first variable be the dependent variable. Let the second variable be
that which is easiest to regulate experimentally. Let the third variable be
that which is next easiest to regulate, and so on. In exceptional cases, this
arrangement may lead to an impasse, because the dimensional matrix does
not contain a non-zero determinant of order r in the right hand r columns. The
variables should then be rearranged w1thout altering the recommended

arrangement more than necessary.
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When a transformation of a complete set of n—terms is performed to
obtain a different set to achieve greater experimental control over the varia-
bles, it is necessary to ascertain that there are as many =—terms in the new
set as in the old and that the new w—terms are independent of each other.
Otherwise the new set of =—terms will not be a complete set.

An extension of the method ot dimensions. Directed lengths and dual role of mass

_ Bridgman® emphasised the fact that there is nothing sacrosanct: about
MLT or FLT as fundamental dimensions-and that dimensional analysis is
merely a man-made tool that may be manipulated at will. The only justification
of dimensional analysis is its utility and, therefore, in judging the value of
any new method in dimensional analysis the sole criterion must be the
pragmatic one. Thisis the touch-stone by which any claim to advancement
of knowledge or improvement of method in this subject must be tested. It will
be shown in this article that two of the entities, so long treatéd as basic, namely
length and mass, are each capable of analysis into simpler and more funda-
mental constituents and that the use of appropriate constituents results in
the clearing away of certain ambiguities and in an increased power of the
analysis. ' i

In dimensional analysis certain concepts such as those of Mass, Length
and Time are chosen as primary and all other physical concepts are expressed
in terms of these primary concepts in the form of their dimensional formulae.
The number of primary concepts as well as their nature may be varied at will.
The dimensional formulae will, of course, change with the selection of the
primary concepts. In order to avoid ambiguity the dimensional formulae
ascribed to two different physical concepts ‘must be different i.e. there must
be a 1 : 1 correspondence, between concepts and their dimensional formulae,
In the MLT system this requirement is violated in a number of cases. In the
dimensional formulae for energy or work and torque, both of them are measured
as force X distance and are, therefore, represented by the same dimensional
formula ML2T — 2. Despite this identity in dimensions, physicists have always
regarded energy and torque as distinct concepts. Another example is the
confusion between normal stress and shearing stress. These concepts are often
considered as identical from the mistaken notion that ‘dimensions’ are associated
with units instead of concepts and that identical units imply identical
concepts. From an operational standpoint, however, the above concepts are
as distinet as energy and torque. Such ambiguities tend to introduce into
dimensional analysis a vagueness that is anything but helpful. In the example
quoted above ambiguity arises because no attention has been paid in the dimen-
sional formulae to the direction in which the length is measured. In the concept
of energy length is measured in the direction of the force, while with torque
length is measured in a direction perpendicular to the force. This is the charac-
teristic that distinguishes the two concepts and this very characteristic has
been ignored in the MLT system. Thus in the dimensional formula for torque
ML2T—2 the length dimension occurs twice but although these lengths are
measured in mutually perpendicular directions no distinction between them

"has been made on this account. If this is done the dimensional ‘formulafor
torque could be represented as MLy Ly T—2 or by the cyclic variations
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MLy L; T—2 or ML, Ly T —2 Energy or work, on the other hand, is the product
of two collinear vectors and is accordingly represented by ML 2 T—2or ML?, T—2
or ML?% T—2. Thus by resolving the length dimension mto three mutually
perpendicular dlrectmns it is possible to dlstmgulsh ina mgmﬁcant way between
energy and torque.

The resolution of the length dimension L into three mdependent length
dimensions Ly, Ly, L, is useful in many problems. Since such-a resolution leads
to an inczease in the number of fundamental dimensions the number of n—terms
in the solution will be less and, therefore, the solution will be more complete.
In some cases the use of vector lengths enables a complete solution to be deter-
mined which by the traditional method would not have been possible. In other
cages, as will be shown later the employment of these vector lengths makes
results more significant than they otherwise appear to be.

It is possible to carry out the analysis of the length dimension one stage
further by attributing positive and negative signs to the components By
distinguishing between Ly and L.« etc. We may resolve L into six components,
Such a procedure has not 8o far proved to be of any practical value, but the
remarkable increase in power of the method accruing from the employment of
components of L justifies the expactation that the use of even more fundamental
entities would on appropriate eeeasions be valuable.

Like length mass also can be resolved into two components In Physics
mass is commonly regarded from two quite different points of view: (1) as
* quantity of matter and (2) as inertia. While it is true that there is strict pro-
portlonahty between the two, that does not make them identical. They are
in fact quite -different in nature and should, therefore, be differentiated by
distinct dimensional symbols. We can make this dlstmctlon by writing.

Mp =Quantity of matter

M; =Inertia

Although examples commonly illustrated are concerned with mass as inertia,
in certain cases such asin problems involving heat and temperature it is mass as
quantity of matter that must be taken into account. The resolution of the mass
dimension into two components brings further increase in clarity a.nd power
of the method of dimensional analysis, )
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APPENDIX

In the Rayleigh’s method the secondary quantity is written as the praduct
of powers of the primary quantities on which it is assumed to depend. Thus if a
measurable physical quantity « depends on the primary quantities a,, ¢s, 3,
... ., Gn We WYite

@ = Cy adrag®s......i... S PR (A1)
where Cy is a dimensionless constant and ¢, 650 -n v ¢, are numbers whose
values are determined by a procedure outlined in page 8. The validity of the
formula (A-1) is to be established. The proof is based on the following two
axioms which are inherent in our methods of measurement and evaluation of
quantities.

Axiom I—Absolute numerical equality of quantities may exist only when
the quantities are similar qualitatively. '

That is, a general relationship may be established between quantities only
when they have the same dimensions. Tor example, a quantity that is measured
in terms of force can be equal only to a quantity that is evaluated in terms of
foree, and cannot be equal to a quantity having dimensions different from that
of force. ' ' : ' ‘

Awiom II—The ratio of the magnitudes of two like quantities is indepen-
dent of the units used in their measurement, provided that the same units are
used for evaluating each. ‘

For example, the ratio of the length of a table to its width is the same,
regardless of whether the dimensions are measured in inches, feet or metres.
This axiom is the direct result of our standard linear system of measurement.

The general relationship between a secondary quantity « and the primary
quantities a;, s, . ..., Gn MAY be written as

o =F (@ Bgy -ovvs Bn )ervens S (A-2)

The secondary quantity might, for example, be the horse power of an
engine and the primary quantities items such as bore, stroke, rpm, fuel consump-
tion ete. ' ~

The form of the function f is to be determined. In this equation « is the
number denoting the magnitude of the secondary quantity and ay, @, dg;. - - -
a, are numbers denoting the magnitudes of the primary quantities involved.

Let B be another magnitude of the same secondary quantity (power of some
other engine) which is to be evaluated in terms of the same primary quantities.
Then, in general,

B=f(by by ..vv s bn) TP U (A-8)

in which by, by, ..., bu are'qua.ntities identical in nature to @, @, --.., On
but different in magnitude. The nature of the functions in (A+2) and (A-3) is
identical; only the numerical values are different.
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. If the sizes of the units in which the primary quantities are evaluated are
changed, the number representing the magnitude of the first secondary quantity
will change from a to another number «’, and B will change to g. That is,

o’ =f(w1 ay, m,‘az,.. .. ,'wn'an )
and . B . " ¥ - »
B’ =f(w1 b]a Xy bg, o . &n bn )

in which @, @,, ...., z, represent the ratios of the size of the first set. of units 7
to the size of the second set of units. For example, if @, is measured in feet-and

T,a, in inches, xz, equals 12.

From axiom 2 we have
. , "

*«
BB
«

or, oc’-:-T.B’

' flay, a ..

.ey On)

Ol',‘f (wlal’ Tallas < « s Ty al’l) == f (bp bz; e bn»)

S (@w3by, @by, . . ... 24 by)

»

co (As6) -

If both sides of eqn. .(Ak- 6) are differentiated pa,rtially'With respect to each z,
there will result a series of equations of the form

COf (240, Ty o oy Tn Gn). [ (03, 0. . .

o 9 (ai @) Fuby.....bn)

Let all the #’s become unity. Then

2f(ay, a5 ..., an) S flaa ..

2 0n)y f (Bibr by, 3 by)

ai = > n)
* & ai, b, by ool by)
or,
o 1 2f(ay, e ..., ay)
floyag ..., an) 8 a;
1 2 f (b, by,

‘b‘.

o (bi wg)- "

l'“f"(bl, bz, e evy bn_)
&b

b)) (4-7)

=b
- f(b], b2, e sy bu)

- b;

The left hand side of the above equation relates to the variables of the first
system and the right hand side to the variables of the second system. The two
gides can, therefore, be equal only when each one of them is equal to a constant,

80 that : o
of(ay, an ..., ay)

a;

f(dl’ %’ ""’a'n) ‘
where C; . is a constant.

3] : (al’ gy oo s an)

oa;

,_‘f (al,rag, cviey Op) =

'\a.
« Wy =Ct'

A8)
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. Anequation of the type (A - 8) will exist for each value of a; and b;-, each equation
_ being a differential equation of the general relationship between f (a;, a,,. . . -, an)
and the particular a; involved. Since 1, 8y, + -, Gn ATE. ‘independent quantities, - -
eqn (A-8) may be written as :
aflagy, a ..., ay) —C- da;
- - ~ =3 - .
f(al’ az’ RS | an) ai : )
or, log f (ay, a5, ...., ay) = C; log a; - constant.
' If the same procedure is carried out for each value of a; there results the
general solution

log f (@, @y « .y a,,) = C, log al—l—C2 log a2 + oo Ca logan 4 log Ca

bi,f'(al, Ggy vov. y) = Cq alcl agc“" voualiy
so that



