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ABSTRACT

.+ This communication presents a generalisation of the ‘R,
D. 38 Method’, given by Crow, to the case of finite shot-
start pressure. Further here the problem of composite charge
for isothermal model hag been discussed and the expressions
for the maximum pressure and muzzle velocity have been -
derived. :

Introduction

The problem of internal ballistics has been dlscussed by various authors,
- under different valid assumptions. The most simple method was given by Crow.
This method is based on the following two assumptlons —

(1) Isothermal a.pprox1ma,t10n,» and

(2) " a zero shot-start pressure.

This paper consists of two parts. The first part gives an extension of the
- R. D. 38 Method, given by Crow, to the case of finite shot-start pressure. Se-
cond part deals with the problem of internal ballistics, based on 1sothermal

model, for composite charge.
‘ Notations,
c=charge weight
D=web-size
6=form factor
F=force constant
B=rate of burning constant
y=ratio of specific heats of gases
K s=total capacity
K ,=chamber capacity
Xze=shot travel
(Re—K,)
K |
Wl—effeétive mass of the projectile |
=1-06 w-%c, w being the actua] mass of the prOJecblle.
f= fraction of D remaining.

Z= fraction of the charge burnt.
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Fuirst Part.
Basic equations.

- Thefour basic equatlons of 1nternal balhstlcs for single cha,rge and isothermal
model are:

FeZ ( T3 2W1 =Ap
(=+1). )
3“’1 ' : :
v -
w, (1+%T %=Ap‘ SN

Z=(1 — £)(1+6¢)

' af
and D= —gp

- Solution of the equdtz'ons. :
Eliminating p from (2) and (4) we have,

dv AD df N ‘
w (1 5 —TE T i B

Integratmg this equatlon under the mltlal GOJldlthIl%

v=0, x=0 and f=f_, we obtain

_ A0 ' e
T
e ) e
Fr<;m equations (2) and (5) we get, ’
ADv df PR |

With the help of equations (7 ) and (3), equatlon (1) becomes, -

M(f— £
<x+l) [ T — H(T+6n ]f (®)
‘ oA (14 SO
where ( 3W1)2 =M .. (8,2)

: ﬂzwch( -
Integrating the equation (8) under ihitia;l kconriit'viohs; lee'ha'we
M1 —f)

_ 1—f (149) (I+9f) (T(IT
kD *l‘[ It ] L (o) ]
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Substituting the value of (x-+I) in (1) the pressure is given by,

CaMa—fy, M{146f,)
p=K(1 — f) (1+9) © (14-6f) 6(14:0)
h ) M(14-6f,) -
T e 1t _Ma—1) —TOH0)
K= L Ja—f, T per) .- 10)

Thus equations (8), (9) and (10) give the shot velocwy, shot-travel and
pressure at any instant when the charge is burnmg

Denoting the values at all-burnt position by the suffix B, we have,

ADf "~ FcMf 2 '
. e L .oy
() w(te)
( M ( 1+6f, :
(x5 -+ i1 —1) 7o) (1-6f) 8\ 14 (12)
and py —K ‘ | (13)

where K has been defined above.

Mazimum pressure

For maximum pressure df —37~ =0. Therefore differentiating equation (10)
and snnphfymg we get,

_(Mf,—146) | o
= W——fm (say‘) . .n .. . e - (14:)
Therefore, the maximum pressure is_given by,
MO —g) M(14-6£,) '
P =K —fn) 00 - (14-6f,) 000 o .. (15)

Muzzle velocity.

- After all-burnt, since the expansion of gases is adiabtic, at any travel
x>xB ;the pressure is given by,

XB +l

P=py | —or7 ’ SR .. (16)

Substituting the Value of P. from-equa.tion‘(lG) in équatipn (2) we ob'taiu,

XB +l
W1(1+ 2w, ‘_'A ( x4l )
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Integrating this equation we get
ity A (52 ) [ ( ] le )«r— 1]
w3
XB +l Y — 1 . . - :
[1—( ) ) ]—(p and makmg us§

o*equatlons (11) and (1) at all burnt posmon, this equatlon reduces to,
2 . _ :
Fo(MP o) St )

g o L T
» c
1 ( 1+ 3wy )

Hence the muzzle velocity is given by,

Now puttmg

vy = SoMoten) . e . (19
Wy '
where og = [ ( :2 ii 71 ] and (xp +1) is glven by equa-
tlon (12)

Thus equations (15) and (18) give the max1mum pressure and muzzle
velocity, respectlvely -

Second Part ‘
Basic equatwns

The basic equations of mterna,l ballistics for composﬁ:e charge hased on
isothermal model are: .

(1+ _cl+02 ) S ,N -
(F16,Z,+Foc.Z,) 2wy —Ap. (1) '

SO (1+ ‘%‘f“" ) | P
) [1+ “1"'“2 —QY-=AP. @)
1=(1—»f1)(1+6_1f1) S (&) '
D, f,il — B L LW
| (1—-f2)(1+6f2) RN S (5)
D, Si —hp - L. e

Where the suﬂ”lx 1 refers to charge ¢, and sufﬁx 2 refers to oharge Cge
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Solution .of the equations 3
' From equations (4) and (6) we get,

d, D, .
ar, = ﬁ:D =Ky feay)

7

Integrating this equatlon under initial conditions, fl—-l f, —1 we obtain

(fl - f1>o)—K (f - fzso) L

.o

Candztwns Sor szmultamous bummy and non-simultaneous bummg
Now two cases arise. -

Case 1. The two charges bﬁrn outb simtﬂtaneously.‘

Case 2. The two charges burn out at different times.

™M

If fhe two charges burn out simultaneously, then f;==0, f§=0 and the

condition for simultaneous burning is Ky=f;,0/f;,0

If the charges burn out at different times then one charge which burns out

first is, say, ¢;. At that instant f,=f ¢, (say), then

f .
flo =K{fo0— f24 ) for th“‘ (fzo 11{0 )
1

Since fy,t, Is a pos1t1ve fractlon, therefore condition for charge ¢, burning

out first is K1>

fz 0 B
Similarly condition for charge ¢, burning out first is K, —f.liq-
- : 2,0
Now eliminating p from bequations (2) and (4) we obtain,
Gt Y dvo AD, df, -

Integration of this equation under the initial conditions, f,=f,,,.
fy=1p,v==0 and x=0, give,
4

___ADy(f,0 — 1)) ' o
ﬁlw1(1+—‘~’i‘32-) | o |

2w,

With the help of equations (2) and (8) equation (1) reduces to,
o AZD,? [1+ (;1+02 ]

7,4 202 2y Wy
Fier ' 312W1F1c1 [1+

o,

®

(9

dfl
) ]2(fl"° —fl)Tx - (19)
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Substituting the vaJue of Z,, and Z, in terms of f, rirvtkthis equation we '
get, o . - . A 3
d _  Mfhe—*f)
x+l  afbij—e

_ Faep
(61+62 F10 K ) ' o
. . . F202. F202 262F202f20 ) .262F202f1,0 )
b_(l-_ b — 62 Fie,K;, . FieKy + ¥ie K, ™ o Fie, K2

af,

where

dx  My(fio —f) S
Patd  ared—p o @
o TR

where a—p= ="

',xp:—

Equation (11) can be furthgz{writﬁen, as, _ ‘
<  M; (fo—a) 1 M, (fio—B) 1

= = 1 R : . o (12
= 2 B @ih) | s @H P =
Integrating this equation and applying initial conditions we get,

x4 _ froto fi—B \nu :
( ! W_ f1+°‘ ) ( f1:o—ﬁ o o (13)
. where '

_ M, (__f:1,0+oc M, fi ,0—'13

v % a+p ’ K= a8
The pressure is given by ' ‘
K, (e—bf,—a £2). SR
p=— (X_;l) 1 : . . L9
. F1 ¢ ( 1 + (31 + Co ) ‘

K2= ok W]_
A (1+ 1+»2)
Wy

Case 1. Slmultaneous burmng of the two charges.

£ }
For s;multaneous burnmg the cond;tmn s K= ~—1—’(), and all these

a0
fi0

oquations hold good for K = T-
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ffhe values at the all burnt position are,

V‘.'—— AD]_ fl() . . FIGIM f210 :
B ¢+ - ¢+c e (1B)
o (14502 ) W (14552
1
) ( )
= . .. (16)
(x, +=1 e a9
- 17
%= 47 tn
After all-burnt
After all-burnt the gases expa,nd adiabatically, and the pressure is given by,
. XB -—I—l ‘ .
p—~pB (—m— oe oo .o .o (18)

Putting this value of p in the dynamical equation we have,

W (1 4 -t 1‘-11 = Ap_ (XBH)"" .. . (19)

2W1 X+l
Integration of this equatlon under initial conditions glve,
v = v + 2APBU(2$;F 3 ( = 20
w3 .(1 + 42;,%2—)(w~1> x-+l @0
1 -
The muzzle velocity is thus given by,
Vg = V54 2Ap“c(fc+l) : ( xpl \71 T o
W (1 + ﬁi) (v—1). — N\ xH 1@
1 -

For maximum pressure dp==0. Therefore differentiating (14) and simplify-
ing we get, )

f, = _L—%IlfilfTb = fim (say).
Therefore, maximum pressure is given by,
K, (e—bf, m—af? ) ‘
Pa= {xat1)
where (X,+1) is obtained by, putting f;=f; s in equa.tlon (13).

Case, 2. Non-simultaneous burning of the charges.

All our equations from (1) to (14) hold good for this case upto the instant
when both the charges are burning. When charge ¢, is burnt out, our equations
become :

. G ey
__Fior+TFocyzy L LA Ap ' l (22)

x4l ' c;+cy
‘ v  1 + —‘73%
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(1 4 ata ) dv Ap. . (93)

, T 2w, J dt
2y = (1—) (146, fz) v s ce e e (2
g | ' | oy
D2 dt = - sz' . s ) YT LN i ‘. . (ZB)
» Ehnuna.tmg p from (23) and (25) we get, .
w [ ate Y dv - AD, dfy,
LW (1+ 2w, a7 B, dt _
Integra.tmg and applying these initial conditions v=o, fy=f 935 WO have
ADz (f20—‘ 2)

v:
C146Cy )
w 1

. Now with the help of equa,tion’(23), equation (21) reduces to,

(1—£) (146 )+

(x+1)
dx .My (Bo—ty df
(x+) T Oy (o tfp) (B

where
1 Fiey
e —e«(l + )
/31"”0‘1. 9 (0 —“1)

[ntegrating equation (27) and applyixfg initial .conditions that x=xy,

F1(’1

(27)

f ,, .
‘and =130— _11-{9 = {1, (say) we have,
M, (Brotan) M, (Bo—pBy)
(=t ( o+, ) Ba (g +1) ,gl_‘f'2> 0z (21+5,) a9
(xp, xp, +) \utfy /) Bi—f, N
The pressure hereafter When charge ¢; is burnt out is given by,
]
(x+1) , '
Gtcy
F, 02(1 + 3w, )

where K, = p——
atve '
A (1 + 3w, )

and (x+1) is given by equation '2€) =
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The values at the all-burnt position are given by,

. AD, fo T Wy M, 2
BT = i : .
+c : ¢-Fe s (30
' ﬁzwl(l + 21w1 2) Wy (1 + 13W12 ) .
Wz (footay) M, (f50—B1)

(x#-H) ¥=(Xb ) (;—3_%7-) ocfl‘ﬁl (13 ._f’ ) | 0, .(ot1+ﬁ1) @31)

’ Fl C1 . -
‘ d ._._K2 F2 2 1 ] ' 32)
cedp, ==y

For maximum pressure oceurring in between the twe charges,dp = o

Therefore differentiating (29) and simplifying we get,
f‘— M2 f1’0+62 "‘_1 . f
2 T .,M2+2ez — 12m,
" Hence, the maximum pressure is given by,

[ Ha ]
‘K — —f2m 0, f.
- 2 FZ 02 + (1 Z,m) (1+ 2 Z,m) (33)

Pm = (Em+1) ‘

where (X 1) is obtained from equation (28) by putting f, = fa .

If the maximum pressure occurs at all burnt, thenits value is given by

equations (17) and (32) accordingly as both the charges burnt out simultaneously
and non-simultaneously.
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