SOLUTION OF THE PROBLEM OF COMPOSITE CHARGE USING ‘R.D.38’
A METHOD . R
By V. B. Tawakley, Defence Science Laboratory, Ministry of Defence,
‘ ' New Delhi _ _ o

ABSTRACT

In this paper the author has solved the problem of in-

. ternal ballistics of composite charge using ‘R.D. 38’ method

which is based upon the usual isothermal approximation. A
linear law of burning has been assumed. :

INTRODUCTION

The problem of composite charge can be solved either by reducing the
charges to a single equivalent charge as has been done by Corner or by treatitig
the problem directly. Corner has suggested how a composite charge, weights
(C,, C,) of webs (D,, D,) and form factors (6, 65) can be reduced to a single
equivalent charge C' of D web and form factor 6 such that the single charge -
gives the same ballistic equations as the composite charge. He has given a
method of finding the value of 8 and suggests that having found - the value of ‘6
we can use it for finding the ballistic solution of composite charge by any of the

well-known methods. - :

In this paper the author has given a direct treatment of the problem of
composite charge using ‘R.D. 38’ method which is based upon the usual iso-
thermal approximation i.e. the temperature of the gases during burning can be
replaced by a mean value, corresponding to effective mean force constant A
assumed to be equal for the two charges. Thisis a fair approximation, since the
continuing conversion of thermal energy of the gas to kinetic energy of the
shot is largely compensated by the generation of energy by the reaction of

more propellant. -

Fundamental Equations
The equation of state of the gas in the gun is’
1—Z 1—-Z
P, (U+Aw—-01 5 : —G, 5, 21 ;T,‘C:Z"Il‘fﬁqﬁzi?’lz) =2A(C2,+C,Z,)

where P, is the mean pressure through the volume behind the shot. But from
- Lagrange’s approximation the space mean pressure P, at the instant considered

is
p C;+C,
(1 + 3W, “‘1)

C;+C,
( 1+ =,

where P is the pressure at the breech and the pressure on the base.of the shot is

| P, (2)

P, (1 + gé—v%—qz—) and W, is the effective mass of the shell.
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N eglecting co-volume and usmg equa,ﬁon 62) in ( 1), we have

Integratmg (8) and applymg the conditions that mltmlly fi =1, = 1,we get

(1—£f)=K1— fz)
Now two cases arise, viz :
() The two charges may burn out simultaneously and
(%) The two charges may burn out at different tlmes

Case (1):—If the two-charges burn out - slmultaneously then’ at “all. burnt”
1=£,=0 and so from (9) we have the condition for simultaneous burning as

K =11ie g, D, ——ﬁz

| | v (1 GG
YRR O ’gez 3 - . 2W,
PU++As—-2 . 2 = (C,Z,+C,Z,) m' . (3)
8 8y 1 GG
| U awp
We write .
€, C, ; T o
_ U‘(T +T = Al (initial free space behind the shot),
: . 1 2 . : L
So equation (3) becomes ' -
(1+ 01—1—02-)
#1 2W s v .
P(w + l) A((}],Zl—‘-' 0272) C St (4)
A1 + G+
: | (1 A
~ The form functions are ‘ '
Zy = (1—f, 1) (1 + 6 f1) ‘ . e ae {Da).
» Zy = (1—£) (1 + 62f2)‘ .. . (Bb)
R The rate of burmng equa,thn.s are L
. df : : N
o DiTHTE—ARR L L (6
N R R T T E af, ‘ o .
s goitagen ot bl w D2 dtg = ﬁzP ’ :?\ Dwe (6b) ’
The dynamical equation of the motion of the shot is
" ‘o G40 yaAv
(Wl+~“2i—?~ e AP R
Simultaneous and non-slmultaneous burning of ‘charges i
From (6a) and (65); lwe have.
df g g:]) ~K(sa,y) Cem Ll (8)
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Case (#2):—1If the ‘charge C, burns out first then if suffix ‘b’ denotes ﬁﬁs mta.nt
we have fmm (9) y
1
2b=1— g |
- But f, bmus’o be a posn:ave fraction, and so the condition for the burmno‘ out of
charge C, first is, K > lie. B;Dy > Bl ,
 If charge C, burns out first we must have similarly K<1i.e. )31})2</32D1

For the sake of deﬁmteness we will cali that prope]la.nt which burns out
first as C,.

Solution of Equations

Ehmma.tmg P from (6A) and (7 ) and integrating, we get e
. V — . ‘ADI (l—fl) . . . (10)

(05 7%)

If we use equa,mon (10) in equation (7 ) and eliminate P by using equation (4),

we obtain
( 14 0, + G ) :
ADp df, G2+ Gl 2W, ('11)
c C dz (w+1»; ¢ +C \
Puttmg the va.lqgs of Z , and Z, and making ase. of relatloq (9) e ge.ta .
de " (a+ D) ’ :
dfl =% A
1+ CK{1+ 'R ( 1— K)} +fl{01+ xS
o - .. (12)
where

O+ €\
'“'A’Dl( THaw, I;‘;ﬂz)

LR LT 7\01512WT (1 + 1 + Cz )

Integrating equation (12) and applying the 1mt1al _conditions that. 2 = 0 when
f, =1, we ob‘tain g ’

1§ {
ax{ e

M, =

M
Gy 0

o6, 1) T GX,
)}+ {91 T 01K2 } ,
) {a+ o 3

(w+£)=l

H\H m‘lH

€13y
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Equation (13) relates the travel to “t',he’ ‘parameter fi

The pressure P can now be obtained. ffom ‘e(i_liata,tix_)n (4) as ’—' f

s 0-6 o (- k) B oo
P= : _ W,
R ‘ e g 041_4‘.02)

A 1)
(z+0h N (1+ W, )
o (19

. g kS . . *
- where (# 4 1) is given by equation (13)

This completes the determination of V, X and P as functions of parameter f;.
The above equations hold so long as both the qharges‘are%urﬁing.a

Case (¢):—Now we consider the case when both the charges; burn-out simultane-
ously. In this case all the above equations are true for K ==1. If suffix ‘B’ denotes
the position of “all burnt’’, then the position at this instant is obtained from (13).
by putting f; = 0 and K = 1, Thus - » ‘ :

, | _ MG
' 0;0,-4C,0.
“ +l)=l[ Cu(l40) +Cy (1 +6) Gt 2)‘, o
: (€, + o) i . (16)
Also the pressure at “all-burnt’ is = s - o
) o C, 4Gy 7 .
Py e A'X(Cs"’li'(?;_)"'v'( 1+ 2W, ) (16) ‘
B “Alwg+)) ( Ty GtG ) - 19
where (25 + 1) is given by (15) B
And the yelocity at “all -burnt’ is : ,
. ‘ AD,
v .. 17

Case (ili):—Now we consider the case when charge C; burns out\ﬁrstand C,
continues to burn, In this case all the equations from (1) to (14) hold good
and the values when the first charge C, is burnt up are NI

__AD, A :
e ]
ﬁl( W1+ 1; 2 )

I :jf‘ . Vb =A it 'A (18)

M,
—
0+ ——CIKL

‘ C, f S ‘ 0,0,
ag{ra(- )} e ai )t |

(o +1 )= :
i R *@0:*1({1'*“’2(1“%)}

. 19)
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.rq+%{&@1——)} A(1+‘+2);9

and Py = SR : @0y

i ! C ; et C] + 02

' ' A(w - l) L (1 4= )

iwhm@b+0m@wnhﬂw)

Now when charge C, is burnt out, Zl-«l and s0. the equatlons of internal ballistics
while C, is burmng are

: ‘ 01- + Gy )
A (G, + 0Z,) {L(1+' oW, )

P(z +1)=1- : - - A (2L
,x.% A_,;(I.Q+%) ‘
S\ TEw
Ly = (1) (1+02 f2) :
Dr%%=—&P .. e (23)
B Ry ‘ N
(W1 + ——i~ Ty -—AP R 7))

Eliminating P from (23) and (24) and mﬁggrating, we get
V= ADz (lvfz)c "
,32 (Wl + 1+ 2) .

Using equation (25) in equation (24) and eliminating P with the hefp of equation
(21), we obtain B ' S

.. (25)

o : o Ci+Cy
DD g ooy (U "E'WT”)

' o\ dz 1 0.0
: Aﬁz (W1+ 1t 2) 7 : (:1;—}—) ,(I‘v'i’ ’gy_vla—' )

This can be written as : ‘ S
dm: ) (1—‘-f2)dfg L : y Y (26)

o —7=—M, .
, G, \ )
T ) (e

o1
R .‘l, C+Cg
s (14 S5 )

C
XGWIBQ (1+ ﬁj‘;r_

where
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:Equatlon (26) can also be put in the form

' H“fz) df2 .. (2N

_— T+T ~ 40y T (1—afy) (14bty)

where : o v DO
a—b— 9?6(11_{_:0921))— a>h

Thoefors ;7 = ﬁf&) ;))ﬁljafa)+ ii: i ]df’

. (28)
Integrating equatlon (28), WQ get -
“M,C, (1—8) M,Cy(1+b)
log (2+1) =— a@1b)(C,1C, )log(l —af,) — B(a+b)(C, -0 )log (1-+bf,)+-const,
The constant of integration i is obtained from the conditions that when the first
charge is ‘all-burnt’ i.e. at fy, = 1—;%—,,w=mb Thus '
.1
o+l \_ MG (—a). . . |1-a (1__ 1 )
B! = K
8 (xb +l a.(a,-|-b)(01+02)r {—‘——‘“— +

1—af,

M, C (1—|—b) . EERY
m Xl"_ {L—-——*‘ »(x)l T

1+bf,
o z+l
or | % +l
M, 03(1_5) a o MG(1+b)
f1a (1 ) a(a+b) (C,+Cy) 1+b( ) b(a+b)(01+cz)
1—af, * SR
| . (29)

This relates the shot travel to the parameter f,, -

Also the pressure P while, the charge C, is'burning is given by -

[(01+<>n> 1—ya+tas) ] (1 + - jv?,
e ~ .. (30

P=
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‘where (z - [) is given by (29) |

dwe e d

Now the shot-travel, pressure and velomty ‘at “all burnt” are given by

| l . Mz s(1—a)
BN a(atB) a(a+b)(C,+ +(J)
(wb—l—l "‘[lf'”“(l— }] e
M, Gy (14D)
b (a+b) (C;+Cy) -
[l-l—b( )] N
. C _|.() S
S Y (A ) (1+ ;Wf ) S
Ps= ‘ .. (32)
- Afzz +]) (1 . Cl+02,‘) 7 |
: PR ‘ 0 ‘3w1‘!~?
where (2 - 7). is given by (31) T
and [T
S " AD, -
Vs = . (33)
; C,+-C . .
g (W1+ —SE )
-Manmumﬁessure

. Quantities here Wlll be deuoted by suffix ‘m . The maximum pressure ma.y
oceur when

* (a) both the ‘charges are burnmg. ‘
(b) charge C, is burnt out and charge C, is burning
- and (c) at the position of “all-burnt”,
Case(a): ——When both the charges are burmng, pressure P is given by

[C1(1~—f,)(1—[101 1)—!— ﬁ(l—f {1+9 (1 X )*I- % 1J] (1+ Crl-C

ande
1

: ) . 1+ ]
. A(w—l—l) (1+. 3W, )

, (34)

For pressure to be maximum dP=0. Therefore dlfferentlatmg (34) aa;;d sim«

plifying, we have '

o g Ka +0g> e |
S e et T B
: 20+ 13 Ks \02 +M1 -
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Hence
. .
01(1—fm)(1-;=01&m )+K(1—-flm)11+oz (1 )+ 2t
Pmr?—" T =S SR
o ‘ A(mm=H) . ?’i’:"s S
)\ (1+ 01+Cz ) |
, .. (36)
(1+, Cﬁ“"z e
where - ) - f
= M’.lcl
B, ) !
‘ , 1+—-—{1+0‘,(1-— K)}-x- {e + (?21{22 f 010 + "9‘*
- m-l-l) =l |
14 CKil—}-ﬂ (1-——')}4- 1m<0 + g:?{z 1
. .. (37)
The above is true if - ’
flm =0
(1+0r)"’ OK(H-%) o R R
T )
294*"‘ K C +M1 ‘

. Case (b):—When charge C1 is bumt out and charge 02 is burmng, pressure is
given by %

A (1 Rt )

P Cy+C, (1—1y) (146, f5) oW, errd

= A(.v-i-l) o C1 G .. (39)
. (I‘T‘ W——

For pressure to be maximum d P=0, Therefore d1ﬁ'erent1atmg (39) and mmph.
. fying, we have - . ‘ :

1+e ’ 1
E i T
- Hence o |
Ci+Cy
B Cl-{-G&(lﬂfml(Y-Fvsfzm) 7‘(1"{‘ pW ) @)
TR LT A(wm-i-l) : (1+ 01+Gs) :
- W b
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where

, s M20 (1——&)
- 1— 1
(T +l) (b +l) [

:]am+¢XQ+Cﬂ

l—a. f2m

M, Gy (1)

» o 1N} ba+b) (CHCy

' _' 1+b fzm ,—

The above is tfue only if
11— K>f3m>o

i e 1—?“>'1—-— M;I_*;ﬁz >0

» 1 146, .

4. €. K < m <1

Oa,se (¢):—Since at “a.ll-burnt” Z = Z =1, we have

- L+%)
X (04Cy) (1+ -

A (xg +1) (1+ 1_01-1-_02). .o
i 3W1

where
“ - TC (i—}-l) )+C (1+é) e
N 1 )Tl \116) 1C,6,+C,0
(wn+l)~—’l[' By 2 ]:11‘ 20

if both the l('shgrgels bu]rn out simultaneously, and
’ ‘. v ° ) X _‘ M2 CB (1""&)

(28 +l)=(b +z) [ 1—a (1__ 2 )] a(a+b) (G FC))

[ (is £)] e
()]

if they burn out at different times,

{RGE USING ‘R. D. 38’ METHOD

.. (42)

.. (43)
. (14)

.. (45)

. (46)
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‘\ Mﬂzzle Velocity

When both the charges ha.ve been bumt oub the equatlonr of state and the
dyna,mlcal equatlon of the motlon of the shot are

ol+c

(o
Pz +1) = _A(C‘"t'd”) Wy o
| (1 R
3W1,
(W1 01202 = =AP L @)
Eiiminatihg P from (47) and (48), we get ’
| g A@HG) - 1
dz ..
z (w+l) (Wl + Cl+02) . . » (49)

Integrating and applymg the 1mtlal condltlons that When x-—xB " V—-VB , We
have ‘

vt CHC) ol R
VB=VB + log (—— — .
(W1 2t 01+02 ) wg +! o (50) -
which gives the velobity at any z > xg, Hencefhe'r':nuzzlg velocity is given by
2 2 (C,+Cy) ' agtl
V;=Vg + TR LA C,+-C, log (:E];:—T . .. 61)
| (Wﬁ—fr)

where 3 is the length of the bore of thé gun.
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