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LIAPUNOV FUNCTION OF CERTAIN NON-LINEAR DIF‘FERENTIAL
EQUATIONS OF THE THIRD AND FOURTH ORDER A ‘
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(Received 22 January 1968; revised 27 December 1968)
’ Liapunov funotions have been chosen for certain non-linear dlﬂ"erentm.l equatwns of the th.ﬂ’d

and fourth order, thus giving the possible sﬂmatlons under which these equatlons would give
stable solutions. _

Successful attempts are being made since Barbashm1 and Simanov? to generallze
Routh-Hurwitz criteria for the stability of solutions-of non-linear differential equations
of the third3—5, fourth® and higher order? by the use of Liapunov functions. *

Liapunov functions for a few non-linear differential equations of the third- and: fourth
order are constructed here to study their stability propermes by means of Routh- Hurwu',z
criterion.

o LIAPUNOV FUNCTION
By a Llapunov fariotioh’ de° ‘meant a . funcion V (@, T .. iey @) defined

in some region that contains the unperturbed solution @; = @, == .. . &3 == 0 of the
motion considered and which, together with its derivative, satmﬁes certam condltlons
‘given below :— - “ ‘

() The real function V (%, @ \.. : -, w,.) of the variables
Ty, Ty .. <oy %, is assumed to be contmuous in some region 2 of
n— dnnenswnal space. ;

(%)VOO .o ..,>0)=0. . y

(#¢3) The function V @By By e sy By) i posmve and. deﬁmte ie.
for all @y, @,, .. . . ,wnmthereglon @ #0, 7 #0, . e Sl # 0,
V (wl, wz, .ho : LR LY wn) > 0 a’nd o  ‘ ‘V"‘,

« (i) Tts time derivative V. By Bay oo+ oo ., ¥,) following the motmn is ne-
gative and semi-definite, i.e. the inequality v (wl, wz, - -s #a) & 0 holds

for all @y, @ .. .., @p in the region,

If such a function could be formed for the motlon it i then easy to prove that the
null solution is asymptodically stable for arbitrary initial perturbations.

THIRD ORDER NON-LINEAR DIFFERENTIAL EQUATIONS

Case 1 : , .
Let us first consider $hird order non-linear differential equa.tmn - ‘
d L PR
Frr g tat=0 (.=F%) o
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where the functxons f, g depend only on the arguments explicitly dlsplayed by them and
it is assumed that the functions are continuous and satisfy Lipschitz’ condition, : :

To investigate its stability, the differential equamon (1) is dxfferentmtéd with respect
totand is replaced by the system (2) o8 foﬂaws : ,

Put £ == , and  then B e B
a;.l = Ty, ‘ ‘ -
@=L o e e @

";s = —f (wz)“"s”"’y (%)) @y — TET ,
y -]
mew¢( ;)
Routh’s type co'ndztzons i—Let a > Oand let f (mg), 9 (@) be dlﬁ'erentlable a,nd
are such that iy

GfO =0, |
(@) () = 8,1/ >0 - forallm, - ,
(5) ¢ (2) = 8, > 0. . - for all @y, - G

 where 3y, 8, satisfy the relation '8; 8;.'—+ > 0;and " -

(w) 9" (zy) is contu;uous,
then, the null-solution of equation (D1 is asymptotmally stable fﬂr arbxtrary mma.i per-

turbations, i.e. every solution 2, () of (1) satisfies &y (t) -0, a;1 (t) - 0 w1 (t) - 0 as

t - oo provided that - o
~ P @el <&, - 4

for all x;, , conmdered
The condition. for the asymptotw stability is the exxstence of a Llapunov functlon

V (=, @, @), positive definite in x,, @y, @3 such that — 1 (wl, Tgy a;3) along with the solution
of (1) is positive semi-definite in &y, ;, %,. .
Since (8, 8, — a) > 0 , a number @ > 0 can be _chosen sueh tha’o, ‘
' o 8 1 . : .
) ' —a_ >a > -s: R . . T (5)“
‘Now consider the funotion ' PR

2V%wmaam‘h%+%V+“w%+%F+M[f@u~ﬁu}%2

+f[fM**Jv® S

which is obviously positive definite by (3).

N
-
N

Henoe
V-0, ¢, 0) =0, L J S
OV (@, @, %) >0 for (g + 2,2+ a?) > 0, o 7 - m

V (@, 2 %) > © &3 y(w12‘+ zg? + %2) > o0,
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The time derwatxve of ¥ (a:l, mg, :vg,) i

S (9;1, s, xg) ——-U{f’(ﬂ)’o)“"“*}:%

4y fw:)ww?l 59" ) X 2o }we W

Thefefbre 1% (zl, Ty ws) < 0 ~' o PR

and ¥ (o 372: ws) = 0 OHIY»When wé = Ow'% D (95 -
T ¥ ;::}3?23“’8? gwen by (6) 1 1s the zeqmrgd meunov functmn T
Case 2: R -

Let us now conmder equa.tlon

E4fBEta®+h (f) =0 . .. g0

or w1th the equwalent system - . SRR ‘
oL =y N W gL

W AT him,) G
The fum:tmn Fla) 59 (2) (acl) are dlfferentmble fmr all real :v, :52 5 h (3:1)
is continuous for all . L RO

AT

fRomh s ‘type oamiztwns Snppose o
BeO=r@=0 -
(i) flzy) = 8 >0 forallza
(i%%) g (@)wy > 8 > O (2 #0)

b @)z > 8 > 0 (931#0) . \
() W () < & feraﬂml, where 8 81 — k > 0 o i

(12)

“then the pull solution is a.symptotmally st&ble for arbltrary mmal perturbatmns -

Aga.m, choosing & number \,‘@ > 0 vsuch that _i. > 3 > 1 the Llapmmv
funetion could be- written as ‘ ke - 86

o ~ P ,‘._ ;; : . S & [ .

“"*’v = w=>”ﬁ‘1<ﬁws+wz)2+2ﬁwzk<@>+ ﬂf ff(n)—ﬁ—l} " dv

+2fg“’*’*”“f ’ch | <13>

AR
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" . which is positive definite ;

for,

- = - 2 “I’"’r -1 ' -1 2
2V (wy, %, 3) 2> B (Bay +’972){+ 2 J 'tf(’?) — B } 7 d,"?;—f‘ B8 {81 w2 + b (%) }
, ) .
# a . . /
+2j {1——-'581h' (l)} Xh(Q)dt
o ° s

-1 - 2 -1 B "r - ) _ 2

> B Gntod+ G- Bat s | hat i@ |
a2 o

+82(1—Bk81)m1 ! U

Differentiation gives

. { . -1
=] s~ @} oo { @~ F ba

-1

—V (o mma) > (B —BR) af + BB —B) o )

Thus V (%, @ @) < O ‘ : : " (15)

Thus expression (13) gives the requiréd Liapunov function. The rest of the proof is
gimilar to that given in references 1 and 2. ' E

Let R, (% w0 %) be an arbitrary point of the phase space of (2), from
which let an arbitrary trajectory r: @; = @y (t), ¥ = &, (t), #3 = @3 (f) be issuing. What
is to be proved is to show that for £ > 0 all trajectories of system (2) remain inside
the bounded region defined by V < ¥V, Which is true for,

14 = v { £s] (t)’ x5 (1), "73 (t) } & ‘Voj(@ld: wzoa z3"), ¢ >0 k (16)

Also, V() is non-increasixig and non-negative and tends to a ﬁon-nega.tive limit
V() , say as. t - co. If V (c0) =0, the required result follows. "

IV (0) #0, let ¥ (c0) > 0. Coan
Since the set of points (wy, @, @) for which V (zy, & @) < Vo (2% 2% 25°)
is bounded from (16) the surface V (&, @y, @;) = V (o) contains all the limiting
points of {z; (0 2 (), @ (O} |

(N | AR »
In particular, if B is a limiting point, evidently V =0 on 7z , the half-

trajectory issuing from R. Hence V=0 at all points of »z , and this is only
possible if #,’= 0 and 2, = 0 and hence z;, = constant for any (zy, @5 X3)
on 7 , which contradicts equations (2) for case 1 and equations {11) for case 2.
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FOURTH OBDER NON-LINFAR DIFFERENTIAL EQUATIONS

Case 1: :

Let us consider the fourth order differential equation of the form

f+a1§+f(f)+a3£+a4£~0 - (8) -
fleferentlartmg equa.tlon (18) with respect to ¢ we have the gystem Wlth § = @y
as follows :

=m0 L
. Eﬂsv = Ty _ | : |
2y = — ay&, —[" (05) G5 — g 3 — 0, 21

with I -

s o4 : ,,
2V (901’ wz» T3, Ty) = Oy ag® (¥4 + 0y @y + g)?

+ ag

+ g { 0 “sf () — a3’ —“1“4} "73’l
x, ' .
+2atas, _[ 11 (1) dn — oy o Fopa o (20)
as a possibility for anpunov functlon
Routl’s type cenditions :
‘Let us suppose that ,
(2) ay, ag, a, are all posmve The fuﬂcﬁlon f(mz) is such ‘that , ‘
(1) f' (wp) is positive and f” (z,) is continuous ’ B ],» (21)
(1) 4y (x2) —alaaf'(wa)——aa——af%y 5>0 , .
for all a,. A

Then every solution of (19) tends to the trivial solutlon 7y = 0 = @ =a, =, of (19)
as ¢-> oo provided that

| (wz)'wa | < 8y, ' - (22)
for all =z, x; considered. : \ N
Obviously ¥V (wl, Tgy Ty, ¥,) 18 positive definite; for

a4y 6, :
2V (@, @ @3 ) = 6y 6 (B4t 0y “’3 =+ : 0’2)2-

+a33(x3+a1 T2 + w1)2 + “3 i oy ag f* () — ag® — 0y 6, }%2.

+2-a1a’4f {al ag f' (n)~a33—a1§a4/} ndn .
~and

—V (25, a:a, xa, m4) = a as { (aoz.ﬂt:4 %as f (:vg) m:,J "’a‘ - (23)

e
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Whlch shows tha.t V (ml, mz, a:g, w4) < 0 and V {:cl wz, :1:3, .1)4) = 0 only when :83 &= O
Hence the expressmn glven by (20) is the reqmred Llapnnov fun.ctlon.

.C’ase 2

_Det us now consxder the d1fferentxal equatlon i

B0+ 1 E+ wE wi +oat *0 TR g

or mther the system £= a:l s

i 1’1 '= Ly =
o : : Jo
,“"a =Ty ”;

ﬁ& = ""’f(ma) &y — an .’;83 '—"as %“‘“’ 04501
~and the Llapunov function i

2V Gy 50 5) = 2 {w4+ﬁ<ws>+-w2+ = wl} :

oy (x,

{f ("‘3) &y — }m} 4 2 :

Routh’s type conditions :

(z) @y, 3, 0y are all POSIthe "The flmctlon f (:1;3) is such tha,f, 7
(@) I 0) =0,
) @) =80, myf (m) | 31<0 R
- (@) f(“’d)“"‘s — 6’ — g f2 (wa) >0 7 T, @n
F= f foar =
condition (iv) 1mp11es two obvmus condltlons S o n » T
() { f(ﬂvs) ~ n_,& >0 ‘; | | ' ‘» ;‘ 41«(28); '.

O @ —dey>0 o f

Under these condltxons, (26} i is posmve deﬁmte whose tn:ue demvatlve fo]lowmg (25) is:

"V(“”l’xz’f”srw4);asa4w1“+az {f(ms)—— -1w3 e TR T
“ - + z‘hf(%) X a:iza aaw‘, f(:r3) "},‘(29)

e

3

a
+ ,:% (a2 — 4 "4)9?13 : ( (26) ‘
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Wlnch shows that 14 (w1, @a, T3 mé) 0 or expressmn (26) gwes the requlred Liapunov
fumtlon - - ;

3
. EXAMPLES
_Let us con31der a few illustrative examples e

Ezample 1 : :
We first cons;der a third order non-linear control system as repl:esented8 in Fxg 1

The dyna.mlc beha,vmur of such a system is-governed by the dlﬁ‘erentml equation :
S 1y
f +(1—vm' +‘T‘) f -+ TmT 5 + F (f) + ('T; + -T—)TmT f"‘“ 0 (30)
When F (é) = 0, the system is unstable according to Routh’s sta.bﬂity criterion. Now we

proceed to find a suitable value for F (§.) so that the system becomes stable. -
Applying the conditions (3) to (30) we get
M SO =0
1

Mf®=%w%7=&>0

(155) ¢ (§) 7 b (f) 8? ’>'6 ;
and the condlhlon .
-1 : 1 1 - :
@1+T)(TT+p@)—ﬁﬁ>°
Jmphes that F’ (f) >0 for all £ '

() ¢ (f) =F" (¢ s c,ontmuous. ‘ : 7 .
Thus the function F (é‘) must be such, that -~ F* ‘(;f) > 6 for all £ and F’ (é’) is
¢ontinuous and bounded. A possible form of F (f) is therefore glven by F (5)
k£ & being a posrmve coustant ‘

E'mmple 2:
The second system conmdered is’ shown” in Fig

e ) .
R N R Wi A

,'NL .

~

Fig, 1=Third order non-linear control first system,  Hig. 2—Third order non-linear control second system
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This is governed by the differential equétion -
f+ (81 + 8 + $) f + (slsa + 838 +333;) é+§132335 +F =0 (31

Where F (£) is a non-linear gain function. The system is a‘;ymp’cotxca.lly stable for
" any single valued continuous non-linearity satisfying

<2 ‘5) < @

where

by = — 81 88

ky = (81 -+ 8 + 83) (818 3233 + 85 8;) — 81 8283
Application of the cond,ltlons (12) to the above system gives

9(5)—(3132‘1‘5033‘1‘3381)5
k(f)zs}sgsaf—{—F(é)

f(f.)=81+32+33
with

DgO=h(0)=0
@) f (f) = 8 -+ 83+ 83 = 8; >0 for all é

(%) g )/ = 818+ S8+ 538 =28 > 0forf #0
' k(g)/g—ﬁszsa+F(f)/§——-32>0f01‘§9é0 k
(W) B (§) =s;8.8, + F'(§). ,
Now h()/¢ > 0 implies that F (£)/§ > — 31 Sy Sg and the condmon, (8 8 — &) > O
implies that
{(spt 8+ 85) (818 + 3253+3351) "‘F'(f) - 313233}>0
{ (81 + 85 + 83) (313' + 8385+ 858) — 8. 83 833 > F'(f)
If F (§) is such that F' (§) > F (£)/¢ then k, > F (§) /5 > k, is satlsﬁed
Agam, one can choose F (£) to be simply % £,k > 0 and constant.
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