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This paper considers the propagation of plane shook waves in a mixture of conducting gas and
liquid by taking appropriate équations-6f continuity, momentum, energy and an equation of state.
‘When the temperature rise, which is small for a very wide range of problems, is negleoted, across a
shock, it is shown that the shock wave relations assume a simple form. It is also suggested that the
relations can be applied to the collision between two normal shock waves.

THE SPEED OF SOUND

Mallock? evaluated the speed of sound in a compressible liquid containing ordinary gas
bubbles, assuming that the gas obeys Boyles’ law and the mixture beltaves like 8 homoge-
neous medium. Since the consideration of compressibility, however, has a very small effect,
we take the liquid to be incompressible and the gas to be perfect. In a sample of mixture,
if u denotes the ratio between the masses of the gas and liquid, then
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where p is the mean density of the mixture, p, the density of the gas and py the deﬁsity
of the liquid. Assuming that the gas obeys Boyles’ law, we have
e~
\ : eLl” (14+p)p

% dp\b . .
where % is a constant. The speed of sound ¢ = ( Eﬁ—’ ) is therefore given by
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The equation (3) has been derived on the assumptions that the gas obeys Boyles’ law and
the mixture of the gas and liquid behaves like an equivalent homogeneous medium. It is
important, however, to note that we are justified to use thgsg assumptions only when the
bubbles are small and the sound frequency is low. As p—> 00 it is evident that equation (3)
in an isothermal perfect gas, gives the local speed of sound but, since the expression for ¢ in
equation (3) plays an importaitt part in the shock theory, it is convenient to callit as the
speed of sound although it is not so, in the strict sense of the term,
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SHOCK RELATIONS

Tn ithe'system of coordinates, associated with the shock discontinuity and restricting
ourselves to the case of infinite conductivity, the following conditions must be fulfilled? -

<pu>=20 (4)
<p+ +pu= =0 (5)
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where A(4#)} is the intensity of the magnetic field; the front of the discontinuity is pafb lel
to the magnetic field and is perpendicular to the velocity of the flow. The bracket << >

denotes the jump in the quantity enclosed, viz < f >=f,—f,, the subscripts 1 and 2 referring -

to the two sides of the discontinuity; C is the specifie-heat of the liquid and Cy, is the
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specific heat of the gas at constant volume. The equation of state for the mixture, obtained °

from that of the perfect gas, takes the form
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It can heeasuly seen that Whenp. > 00, 1% > Cyy in the equation (6) and the
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equation (8) turns out to be the equation of state for a perfect gas. Further, when? — 0, ‘

equatiors (4) to (8) are all identical with those which govern the propagation of shock waves
in a perfect non-conducting gas. In what follows, we write T, as T} + AT and assume AT
to be small. Then, from (4) and (b) we get
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From '(8) we have
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As a consequence of (9) and (10) we get,
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From equations (4), (10) and (11) we deduce,
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and, from (10),
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After a little arrangement between (6), (12) and (13), we have,
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“As a consequence of (1) and the gas law, (14) can be written as
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where R is the universal gas constant, M the mean molecular weight of the gas and € - Cuy
has been replaced by C without any appreciable loss of accuracy. Although the tempera-
ture rise across the shock, cannot be neglected for all purposes, the expressions relating
pressure, density and velocity on ‘the two sides of the shock assume a partioularly simple

form when AT->0. The sacrifice of accurany in the process, however, is very small. With
this assumption, the equation (11) can now be written as, )
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Similarly, the equation (10) can be approximated as,
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.and finally
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Since the temperature rise across a normal shock wave in a perfect non-conducting gas
tends to zero when 7, the ratio of specific heats tends to-one and since a mixture becomes a
perfect gas when p — co, it may be anticipated that (16) and (17) when p - o0 -and h>0
will be identical with the correspondmg relations for a perfect non-conducting gas
when ¥—>1. Referring to the following relations?,
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we see that our antlcxpatxons are realised. The equations (16), (17 )and (18) can be a.pphed to
consider the collision between two normal plane shocks moving in opposite directions. The
temperat,ure rise across shoeks will be neglected to ensure that after collision, all the fluid
in the regions between the resultant shocks have the same pressure, velocity, temperature

" and mean density. In the special case when the two colliding shocks are of the same
strength, the problem reduces to the impact of a shock wave on a ngld wall.
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