-
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An approximate analytical solution, which gives the distribution of flow varlables m terms of

. optical thickness from the embedded shock when P <. P* has been obtained. The § jump- in the
flow variables across the ‘embedded shock has also been obtained. Numerical results are given

for six sets of values of M and P, N -

Recently a great deal of attention has been focussed on the problem of determining
shock-structure in Radiaton-Gas-Dynamics (RGD) based on the continuum equations of
gas dynamics, including energy transport by radiation and neglecting viscosity and heat-
conduction. In a previous paper! we have discussed steady state flows in RGD when
radiation pressure is negligible compared with the gas pressure and we have shown that
the flow through the shock structure is just one particular steady flow which - joins two

uniform states, one at ¥ = - co and another at x = — o0. We have also discussed the
results of Zel'dovich? and Heaslet & Baldwin® on shock structure with a few new
results. - The steady state flows in RGD can be studied with the help of a first order
ordinary differential equation in particle velocity and radiation pressure with
two independent parameters M and p. For the shock structure, M represents the
ratio of the shock speed to the sound velocity in the front of the stationary
shock at ¥ = + co. The second parameter p depends only on the thermodynamic
state of the fluid at # == + oo . P is monotonically increasing function of temperature
but monotonically decreasing function of the mass density. When P is less than a certain
critical value (P*), depending on M, a continuous flow through shock structure is not
possible, i.e. an embedded shock appears and particle velocity, gas pressure, temperature
and mass density are discontinuous across it, whereas radiation flux and radiation energy
density are continuous across it. Again if the shock is sufficiently strong, i.e. the shock
strength M is greater than a- certain critical value (M*) a eontinuous flow through the
shock is not possible and an embedded shock appears in the flow. In any case, the
variation of flow variables through the shock structure is obtained by numerical integra-
tion of the differential equations.

In this paper, we have obtained very simple expressions for flow variables in. terms of
the optical thickness from the shock in the case P << p*, by approximating the integral
curves. by straight lines on the two sides of the-shock. We mention here that a similar
approximate solution is also given by Heaslet & Baldwin® and Lick? and Vincenti & Kruger5,
In physical situations, which we come across most frequently, we find that p < p* and
hence we feel that it is worth obtaining the solution presented here from our phase plane
a.na.lys1s of steady state flows and present some numencal results
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' ' BASIC EQUATIONS

In the frame of reference moving with the shock in an infinite medlum the motlon B
steady and the one-dimensional equatlons of mass, momentum and energy give us_

pu=m, : v (M
and - . W
(—.};'_-_pq—) + 35 u + ol R m—'a=m02 @)

, Where u ig particle velocity, p mass densmy, pg gas pressure, F radiation flux in posmve
z-direction and m, ¢, c; are constants. = N

Asshown by Prasadl, under MIIne-Eddmgg;on approx1ma.t10n, the radlatlve tmnsfer _
equation and the expression for the radiation pressure give us.’ .

e )
and

where o is the veloclty of light, pr radlatlon pressure, T temperature, o Stefan eonstant
and = the optical thickness measured from the shock. - Denoting the flow variables in the
uniform state at x = + oo by suffix .1, we introduce the following non-dimensional
quantities :

- N P o -, CPr
U — G = - —e
‘ Uy ’ P Pyty® : k‘ ' l":’“J,3 ’
. p - F oy R
p= = Ly M o= (6)
P : F pr® ) "_ . ay ¢

o1 _ o (vTy )y
Q=1+ = - P '—f_,TRﬁ*‘"

—

where a2 = -—’—,— s %<0, Ris the gas constant appearmg in the eqtratlon of state :

| pe=Rel o
. and ¥ is the ratio of specific heats. ' ‘ '

From the above equations we can easily derive

o fe=Q—@ @
dp = Y41 o ;'
E.r=1".=—§(‘yi*) (1—“>(“~* ) S ®

%:3[7}'ng 5 zu(Q—u)}} . (10.)».;
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G4u=a,.,',,=k,=-3M5P{ (Q._u)} »a._sz
Byl asgﬁﬁb - amif“ mﬁz two mtggral ourves pass through this pomt the slopesz ,
of the two mtégrai? ves at this pemt bemg : :

m @ ‘ 3 et
A )‘1 {ﬁ’?ti (512’)1 o+ 4€) } S ’(15)

~ where
B(r 1M | ST
= W >0, ,h..4(rM2.__1)h1> 0, E (16)-
8o that o
, L N ) { R
e e ,),1>0 /\1<0 L
S;mnlarly (}‘2 is. also a saddle pqmimrl&h.exactly two. mtegral qurves passmg through it
w1th slopes - _ )
| N ,(2) A 3 L
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S B APPROXI”MAw E SOLUTION

‘We ha.ve seen from the phase plane analysls in, ,reference I that the ‘shock struoture‘
R &) (0]

‘integral-curve approaehes the smgu:lar pomts G ‘and G, with nega,twe slopeq A a.nd Az =
mspectlvely Aga,m if v

" _*/_‘,-\/374(7+1)7[M2—1|M7
= 16 (7 —1F (/M Ty

- then in the case P < P* an embédded shock - -appears in the s?nock structure and the
portions of the integral ‘curves which represent the front and the back of the shock are

-almost stralght lines.

o » . :
Assuming that in the front and at the back the velocl’cy %isa lmea.r functlon of ,
we have . E ; , .

i lh Gferso gy

and A

' u‘=ur+?‘a (ﬁ—‘*kz)fﬂr e (19)
If sufﬁxes 3 and 4 to the flow variables refer to thelr values just ahead and just
Jbehind the embedded shock, then, since F and % are eontinuous across it, we have

(20)

| o hy=he=h (say) @y -
From (9) and (20) wehave A P S IAEREE S
1— g =, —y o L (22)
From (18) and (19) the expressmns for u, and u4, When substltuted in (22) give
R @ 2 : i
. o X 7 ST i
' S A kA i S
The jump in partlole veloclty across the embedded shock is gwen by
| fly— Gty = — 2\ (hy— k2)+(1—~u2) ‘ BCOR
Also, we have - e Sl | ,
T Y1) s ’
Fe=———2—(~(7~_—;f))—?\.-_(h;—f- hz)[ 1—~u2)~A<k1—~h2>] e
: “3-'1"‘)‘ (7*1—""2) . (26)
and / ,
“ =Gt A (y=ly) - @)




S R
where .
o @
e —_ N 1 3 -
A= (2) (2)
R

To determme the flow variables in terms. gaf the optmal thwkness from the shcck we

substitute z from (18) and (19) in {9)s0 that ‘ :
“dh (r+1) §.@ '
=T a7 =1) ) Al}(b kl)(h -—h) forr>0 o (28)
and 2 : gk
dh (y+41) @)L @ i o _ ’
a;_z—zv(y_;l){,\g}— (k—_k )(hq—h) forr<0 S
where § S - .
“(1) _ '1*—. a e o - N | .
=h——g—>h ’ (30)
, A \ o : R
and S T s . ' T T
. 3 . - o ?;‘a e - . - . ;
A ,'f»b” flz"f‘ (2) ke - : ey

The solutlons of equatlons (28) and (29) with the condltlon
! Il = ha ol at' T =0

are

. k1+ h( )fl T) . | n | : ’\ o \
, h=rRoy Tt R LR
and L .

_WO4RAG .o
THA() Sor e @

'y e

h (r+1) " :
fil) = h(l)_h‘exp[m(l-—uz>h1w] e

where

- and ST
| | e (y+1) @ -

fz(f) 7: e P[—m(l YR 'r]- B (85) -
Thus we have obtamed complete solution of the prob]ﬂm {32) and (33) give J in
terms of =, (18) and (19) give 4, (8) glvesgoa 9 gwes Fand ﬁna]ly

=

T—-u(Q~»u) S (38 -
gives the non-dimensional temperature, . e : E

Yy
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Fig. 1—Shook Structure in RGD[1: P = 0-01; 2: P = 0:05; 3: P = 0°1 ]

B

RESULTS AND DISOUSSI‘ON

The numerical work has been done for the following six sets of values of M and p with
7 = 5/3 and mean molecular Welght 1 as in the case of fully ionised hydrogen g@s

Table 1 gives the values of various flow variables at 7= -+ 0, T &= — oo and at the

- embedded shock. Figs. 1-4 give the variation of various flow variables with the _ optical
thickness from the shock. The values of P* for M = 1'1 and 1-8 (both << M*) are

0-46 and 0-80 and we find from the general theory* that the shock structure should

/

S )
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contain an embedded shock in each of the six cases exeept the last one where M = 1 -8

and P=1, However, the last case was taken in order to estimate the error in the
present solution, which will show maximum error in this case. We find here that
instead of getting a continuous profile, an embedded shock appea.rs in between but the
jumps in flow wariable across it are very small. /

TABLE 1

VARIOUS FLOW VARIABLES AT T == -1 6 AND AT THE EMBEDDED SHOOK

No. 1 2 3 4 5 6

o 11 11 1-1 1-8 18 ' s
P 0-00 008 0-10 010 0-50 lop

Q ©1.4959 . 1-4950 1-4959 11852 1-1852 11852

U 1 1 1 | 1 ' 1

Uy 0-9981 09909 0:9830°  0-0744 . 0-8699 07519

v, 0-93492 0-93492 093492 - 0-74074 . 0-74074 0.74074

s . 0-8718 08790 0-8868  0-5071 0-6115 07296

. 0-86983 0}86983. 0-86083 . 0-48148 0-48148 0-48148

By 1-208x10  6-491x10%  1-208x10~*  2:063x10  1-481x10~  2-963x 10~

i, 159410  7-990x10  1-603x10 1-896x10~  L-115x10  2-564x 101

B, 1-624x10°  8-122x10~%  1-624x10-2 2-960x102  1-480x107%  2-960x10-1

B 1-838 X100  9-441x10~  1-888x10 332010  1-660x10~  3:320x10-1

P 0-4959 -0-4959 1 0-4959 0-1853 0-1853 0-1853

Pos 0-4978 05050 0-5120 - 02108 - 0-3183  0.4333

Pea 0-6241 0-6169 .~ 0-6090 0-6781 0-5736 0-4556

.1_’9-2 0-6260 0-6260 06260 0-7036 0-7086 0-7036

7, 0-4959 0-4959  0.4959 0-1852 0-1852 - 0-1852

T, . 04968 - 0:5004 - 0-5041 0-205¢ - 0-2742 ~ 0-3258

T, 0-5441 0-5422 0-5401 03438 0-3508 . 0-3324

7, 0-5446 0-5446 - 0-546 0-3388 0-3388 0-3388

7 14.962%10%  —2-210x107 -3-848x107 -2-522x10%  -1-010x107! - -1.342x10-1

Y

- We note the fo]lowmg facts from Tigs. 1-—4

(¢} In all the three cases for the Weak shock, the two. umform states 1 and 2 are
attained at almost equal optlcal depths from the embedded shock. This istrue even when
M =1-8 with P = 0-1, i.e. when the radiation is weak. However, in the last two cases.
the flow variables attain thelr asymptotic - values over an optical depth which is very small
for the back as oompared to that for the front of the shock,
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Fig. 2—Shook structure; in RGD [1: P = 0-01; 2: P = 0-05; 3: P as 0-1 ]

(i) In all the six cases 1 — di; ~ 4, —§74, , pezs — Pa1 & Pez— Pas »
i.e. the variations in velooity. and pressure in the front and the back are almost equal. The
change in temperature T,— T, inthe front is more thau the change | 7,—T, | in the back.
The temperature is maximum at 7= —o0 in cases 1,2, 3 and just behind the embedded
shock in case 4, but in cases 5 and.6 the tempetature is maxnnum not just behmd the
embedded shook put in the mterxor of the flow bahmd it.

~
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Fig. 3—Shock Structure in RGD [ 4: P =0'1; 5: P= 0°5; 6:P =10] -

(177) The flux is symmetrical on the two sides with respect to the optical depth from
the embedded shock in all the three cases with M = 1-1 but this is not the case when
M = 1-8. \ :

 We finally remark that the analytical “expressions for the flow variables in terms of
optical thickness are so simple that_they may prove useful for many other problems in
RGD. We can also rely on the acouracy_of the present solution when P < < P* since we-
find that in case 2 the numerical results, presented here, cannot be distinguished on the
graph from the graphical solution aspresented in the Fig. 2 of Prasad®, . :
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