SHEAR FLOW OF AN ELASTICO-VISGOUS COMPRESSIBLE FLUID PAST -
A POROUS FLAT PLATE. .

- 8. P. GuLaTI *&‘W. Kuax
. Univeréity of the West Indies, Trinidad, W.I. ..

(Received 6 June 1968; remsed 24 August 1968) : : . -

Shear flow of an elastico-viscous compressible l1qmd past a porous ﬂat plate las been studied and

a perturhed solution has been obtained, assuming the elastic number to be small. The variations in"
the axial velocity have been mvestlgated through graphs. The skin friction and the rate of heat
transfer at the plate are found to be not affected by the elagticity of the hqu.ld The dxsplaoement
thickness and the normat stress difference have also been studled '

The problem of shear flow of a wscous compressible ﬂu1d past a porous flat plate has
been studied by, Youngl. Gupta? has extended the same problem to an Oldroyd type
elastico-viscous compressible ﬂuld possessing a single relaxation time parameter.

In, the present paper, a perturbed solution has been obtalned for the same ﬂow problem
taking Walters liquid B” which possesses a very short memory and is governed by the
consmtutwe equations® ;. N )
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is the short memory coefficient; Vi (-r) belng the relaxa,tlon spectrum as introduced by
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Walterst. p'é* is the partnal stress tensor and the rate of strain rate tensor —g—t e is
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where the strain rate tensore ~ isgivenby ‘
o ‘ -,
€ip = -—2«—[v.,k + v — vp, pﬁzk] » (3)

This liquid is a valid approxunatlon of Walters4 liquid B’, taking very short memory -
into account so that terms 1nvolv1ng f  N()dr(n>= 2) have been dropped out,
Implicit in the demvatlon of (1) is also the fact that second. order terms in k, have been

neglected.
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FORMULATION AND SOLUTION OF THE PROBLEM

Taking 2-axis along the plate and y-axis normal to it; the equations of momentum,
continuity, energy (neglecting elastico-viscous dissipation) and state respectively are
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where p is the pressure, A = (% -+ ;;;)) the \dilatation, A the coeiﬁcient’ of bulk

viscosity, O the specific heat at constant pressure and 1, is the thermal conductivity.

- As the plate is infinite, it can be assumed that all the physical variables are functions
of y alone. Then from equation (6] we get o ' ) '

pv = const, = —% (say) o | o G

Using eduations (1), (9) and the fact that the flow conditions depend on y alone, equa-
tions (4),.(5) and (7) reduqe to - :
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h.' g‘m'ﬂ the klinetic:'heoryisit iiwell kl;fﬁ that Wit!;?l a deviation from the Név?tonian stresg.strain rélationo
. ship the physical equations also change. However, as 4 first imati sor f DAL
equations have been neglected, - » s approxnma.tvmn. the elasticity effect in the physical
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Following Young, we make the usual boundary layer apymxlmatmn, viz., . o

u = 0 (1), 0—0(3),~~.. -~0(3) _ x-—O(l) } LA
: “ (13)

A=0(®), 7=0(andp=0 (1)
: where 3 is the thickness of the boun&ary layer B

The above approxmlatms give k == 0(8).and then the left hand side of equation (10)
becomes of order (1). Hence in case elasticity of the fluid is to contnbute we find that the
order of ko is (8%). :

Wlth the above complete boundary layer a.pprommatwns equa,tmn (11) glves

dp ' ) _
7?/_‘_0(8) | , | (14)

Taking 8 to be small equation (14) shows that pressuré can be assumed to be 7qonstan_'t,
within, the boundary layer regmn Hence

p o= eonsb = pw (say) ‘ (15)_;

The energy equatxon (12) becomes -
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The equatlon of state (8; and (9) glve v - |
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‘which shows tha;t v is proportioﬁal to T. Hence we may take -
“ ool a8
where a is the constant of pl{dpoftiona,lity. |
~ From the condi_tidns at the bla,te it is found tﬁét B |
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o=— L a9
w
and then . a
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Equa,tlons ( 16), ( 18) and (20) respectlvely reduce to
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- The modified boundary 'conq:iigipng for&az}dz?becogne\ N
6=1 atn=0; 650 asg>oo

and’ ; o~

u.._()at'q.._O u»las'q»—a-oo e k’ (26) ”
The solutmn of equatmn (22) sub]ect to the boundary condltmns (25) is obﬁamed as.
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" Then equation (24) becomes | S
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, Integrating once the above equation, weget

B-Rso(,&;[ﬂ.‘.l.k*fz{\/.oo-;- 1_~o) Rﬂ“’op’7> g:“
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This second degree ordmary dlfferentla,l equamou does not’ admm an exach solution,
- Now, as implicit-in the derivation of the constitutive equations (1) that squares and higher
,powers of Ico are neglected we may take a perturbed solutmn of the form :

u_u0+k*u1+0(k*2) R ey
with , | o R L
B=By+ B +0 () 3

The boundary cond.ltxons on "o and Uy become

uo...()a.tq=0 ‘; uo—ala.sn»oo (%)

and

(o)

ul._Oat'q———O'-' ul-‘->0a.s-r;‘—->oo’ e (39

‘ Subst1tut1ng from (31) and (32) in (30) and solving the resultmg equations for uo and
u, subject to the above—mentloned conditions, we get -
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In the incompressible case, L—howe"ver, Eand é—am obi_;s;in(;d aé5 ; |
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For small value of ko equation (36) giv}e's A
wmled BT Ren e o) (39)

DISCUSSION -
1)) Study of the 'velomty _proﬁle I R

For rough 1llustrat10n, Fig. 1 isdrawn, keepmg 00=~ - a,nd P, =2 and varying R and

) nfor k* = 0-0 and 0- -01. It shows that for small values of x the elafstlco-wscous values of %
are less than those in the correspondmg viscous case for all values of R,.  However, the
difference between the elastico-viscous values and the viscous values decreasea with an in-
crease in the transverse distance » till it vanishes; the point where the elastico-viscous and
the viscous values become equal, shifts towards the plate with an increase in R,.

Fig. 2 has been drawn for the corresponding incompressible case. It shows that the
elastico-viscous values of % in the 1ncompress1ble case are always greater than the corres-
ponding viscous case values.

<

(2) Point of sepamtwn

No point of separation occurs in the viscous case. However, a point of separatmn
exists in the elastico-viscous-case for ;

. ) 3 ) . T ,
B =P a— W= | %

(3) Shear stress and the skin Sriction

From the momentum equation (4) an- exphclt expresmon for the shear stress in the
dimensionless form is obtalned as o

bl

P epa—w . (41)
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Fig. 1—Variations of % vs n with Ra increasing inthe Fig. 2——Var1atmns of it ws v with B mcreasmg in the
" compressible case ’ L .incompressible case

Go=% Pr=2)  (B=h Pr=2)
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Hence the coefficient of skin friction at the plate becores

To =

) E ’ .
P (@y) , =0y R . =
pe U2 |g=0 ° N , (42)

which is independent of %*, the-elastic number. This result contradicts the- findings of
Gupta? who seems to have calculated the expression incorrectly; for the model considered -
" by him, the same result should have been obtained. ~ o

(4) Normal stress difference

The only normal stress difference in non-dimengional form is obtained as

p (@5) —p () av f{';ﬁé (éﬁf 4(&Y}"”
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Tt may be noted with interest that in the comprossible ease the normal stress difference
does not vanish even in the viscous flow case; however, in the incompressible case it exists
only in the elastico-viscous case.

%) Displaoémgnt thickness

The displacement thickness 8* defined as
&% = f (1 —u)dy
§

is obtained as ' :
& _1_[.1._ + Lad
[70/P U] R, {6 - 3(1+P)

Elastic elements increase, do not affect or decrease it according as

r ' ' : ;
{apr—5—10F, o,,l] (4
. ; J )

. | g ;
= g 45
| P,>,=0< (T— 10 6,) | (45)
(6) Rate of heat transfor
The tate of heat transfer at the plate is obtained as
aT

Q=N G|, =0 Ve b Tu—Ta) )
A coefficient of heat transfer may then be defined as.
; Q/ g R ; : ? 4
= Ly : 7
v UCp p O (Twa T,) | ( )

which is independent of the elastic number &*.
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HoWevér;fv i@i the mcompm;sxble case the samie- coeﬁmenb may be de&ne& ‘88

LT

Uop p(Twa y & :Rs e \(48)

R I!i may be 'pomted out that for the Oldroyd type model Gupta,z obtamﬂthat the —rate
S of heat t:ra.nsfer increases wzth elashzcmy As he remarked himself that alf n

-m which gz, p (:m:) etec. vary as exp (——y/f v, {r being the relaxation time parameter} exists,
that appea,red to be ra,ther artificial. o o Lo R e
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