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«In this .paper, effect of radiation, heat-c(\)xvldl'lction'and viscosity on. px‘opagation of

onie-dimensional small amplitude waves is investigated. It is shown that there are three
distinct ~modes of Eropagation viz. (¢} Radiation-induced ' mode, (i7) Modified ~gas« A
‘dynamic mode and (4¢%) Coupled heat-conduction and viscous mode.

The dispersion relation is solved both asymptotically and numerically. For very small
valtes of o, the asymptotic solution predicts the spesd of propagation of disturbance as
z7ero, a5 (isentropic sound velocity) and 0-336 times the isothermal sound yelocity. For
very large values of @, the Ligh frequency waves propagate with characteritic speeds
of the gseventh order operation. ; ’ :

- The problem of the propagation of small amplitude waves in a radiating gas has been
examined by various authors such as Vincenti & Baldwin' and Lick?. In both these
papers authors have feglected radiation pressure pg ‘and radiation energy”density Ep
in comparison with gas pressure pg and gas energy.density Hg « In fact, radiation pressure
and-energy become important only at very high temperature: 107K while radiation as &
mode of heat transfer-throngh radiation flux may have to be considered at much lower
temperatures ~ 103K. Prasad3 has considered the same problem by considering radiation
energy density as comparable with gas pressure and gas energy density.. ‘

But all these authors have neglected viscosity and heat-conductivity. In this paper we
assume that the temperature is of the order of 107K. We also assume that gas is neutral,
radiating, viscous and heat-conducting. ) , ; B

Prasad’s® equations of motion, without, viscosity and heat-conduction terms, have
been used here. An interesting feature of the approximate equations of motion of Prasad?
is that these equations form a hyperbolic system of equations with distinet characteris-
tics. The outermost characteristics carry radiation induced waves, which propagate with

velocity % where ¢ is the speed of light in’' vacuum, and they determine the raf;ge of

influence and domain of dependence. However, when we take the viscosity and heat—con-
duction inte account we find from out accoustic equation thatout of the seven charac-
teristics, four of them are coincident with the z-axis and these coincident characteristics
represent waves propagating with infinite velocity. Thus there is some inconsistency in our
equations of motion. This is due to the fact that we have “taken into account the
effect of viscosity and heat conduction by introducing diffusive terms .as ‘in the Navier-
Stokes equations. , o : »
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FORMULATION OF THE PROBLEM

Let us consider the equations for one-dimensional flow, parallel to g-axis, of a viscous, |
heat-conducting and radlatmg fluid where all physwal quantltles are mdependent of y, 2.
Then we have:

pr = - J I p*2 de , O]
| Ep = %-Jldw" ’ @
and L F = jI wE do (3)

where p* = cos 8 , I is the specific m’oénswv of radiation making an angle 6 with
. w-axis, F is the radiation flux in positive z-direction and de is an element of solid angle.
- Also we have :
: pé ; _ : )
Bo=G1ypipe =Rl g ®

~where pis density of a fluid, 7'is temperature and Ris the gas consta.nt ‘The equatlons of
continuity, momentum and energy are : ,

/I cu
) o +7 e T &r =0 ®)
2 2 : 4 a
T ) Eg p (ou)? “
w (e d) (20 B) o 82 (3)
) » 2T  oF
—E T %= @

where Eg is vas energy d;nsnty per unit mass, Ep is radiation energy density per unit
volume, % is the fluid velocity and p and K are coefficients of v1sc031ty and heat-conduc-
tion which are-assumed to be constant.

We shall make the assumption that the source function for radiation is

o

| B=gm
so that the equation of radiative transfer is e o '

1el oI S - ‘ A

Tt g =a(B=1I) , ©)

¢ &t
'where « i8 volume absorption coefficient and o is Stefan’s constant.
By Milne-Eddington approxima,tion, we get from equetions (1) to (3) and (9)

2F - 3 22F° 6o OF : (10
-~(ﬁ-c—s &z‘)=4 —+7“+3°‘2F | S
1 sF : a]’R T .

1o . )
s gt et aF=0 . (i

and e .EB—_—.spR , o - (12)
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The nine equatlons (4) o (8) and (10) to (12) 1nvolve nine unknowns and thus-are sufficient
to solve any problem of one- -dimensional R.G.D. provided correc initial and boundary con-
ditions are given. Radiation travels Wlth velocity of h/ght.m the medium, whereas equation

(10) shows that qd— =4 - \/— are two characteristics of these equations.  Thus it is true

- that the front of any radiation induced wave in R.G.D. travels with velocity ¢,
the Mlne—Eddmgton apprommatmn shorws that the front of the rad,la.tlon induced waves

travels with veloclty \/- as discussed by Prasad3

LINEARIZATION OF EQUATION AND DISPERSION RELATION
Equa.tlons (5) to (9) may be simplified by the usual process of linearization. -
We assume that there is & uniform equilibrinm state characterlzed by

u=90, pg = Pgo , T=T0,F‘=0,TQOR=?RO =—3—c' Td, E=Eg = 3Pr0 (13)

where pgo, po > Ty satisfy the equation of state.
The pertuzbatmns about this constant state are deﬁned by
u=u,p=p+p, pe=pn+Ve,F =F, py=pr+Fr, (14)

8o that
=T —T,=T, '(ppzo _.,!’_&) B =Ep—Ep = 3'pE' (15)
Substltutmg (14) and (15) in (4), (6), (7), (8), (10), (11),(12) and retalmng only the first
order terms in small quantities «', p’, . . etc., we obtain :
a"+poa;; =0, R )
Po ‘Zg’ + 'é“w'(?'c +Pr)— %’f 8_;%;. =0, | (17)
53— }l (Pa+ )+ —4p'r } 7 +pi: e l)pﬂo gf
Ty — 1)2_5’_'_ K(;P-;— 1) 3?1;;0 _‘p(:jz %Z%’) = 0, (18]
;2:5—5”2 o~ 1%;;0%3 (Zﬁla %1% )+ o o ser, ()

From (17) we can assume that there exists a velocity potential ¢ such that :

v o 4p @ ‘ S
¢ ai’p"“"p (“Po%ﬂfﬁ)e | D
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From (16), we get
. ”‘ R (\ s

Cwow L

| = e
Sub%tltutlng (21) and ("2) in (18), (19) and (2()) and ehmmatlng Y o and PR flomthree-

equatlons, we get : : ;

| [4;»K<y_.1)( I TN [ 3K (1) (
Rp, 8t2 3 aazz) aw4 at + . Rc“‘ R

m(y.--l) \ ¥ [ % T
. RPO - 33;2 .‘a‘ﬁ a2 ]

K(y~ 1) cz A

(82 -02 az-) @26 dp ) & f

T Boxt) e O 4 O

L [r(s e aﬂ)(a: o B\t SEyes
2\ 302 Vor T ™ axﬂ a0 oo \ert T 3oatf et
Bu (gj SpacR (P 1) 4 3t g (¥ —1) 2\ #e1
e \e? o 4;‘13,,0 R amz aafjat“ .
] ,‘ | 3});\4“ 32 ‘82 E i,«vr2,,:. & S A
%@K(‘Y-—-l) L ‘fl_‘( wﬁ)- C
TR i H-*K(‘y—— 3 1 T } T E Y
{4&(f:;»;.a,,‘k@a-f~,;~f T
oo M\er T R (T 6£2 bxﬁ Rl
SRR o=y '»?‘?;(H C,a) , e

o (6 4 ) AR &
R '+P°(_c——+’(?’«-—l)c? (5—[2 af' "x‘-" ot

[ 4} )(;ﬁlﬁ—'a‘??ﬁ)?ﬂf—‘v; S o

‘where e T
: s _ Pgo
apt === B s an. isothermal sgund weﬁd
0 <
e 7pw+4(?—~1>m
LUy = po o R
Pn ¢ ) i
Ly 160aT3()’—1) L
al = S ,
: Rpg om0 i
B —e PO
pGO_ + P@O S s
R T S Cog B B Tad
s Tafaag _GIE TN e W& g,
W gty ) et ey ()
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~

is the isentropie sound velocity. -

The left hand side of equation (23) is grouped by ﬁve square braokets Each bracket
contains a linear homogeneous differential operator with constant co-efficients in # and ¢
and the orders of these operators are seven, six, five, four and three. If we denote these
operators by P, , Py, Py, Pyand P, weecan write (23)2s ‘

e P4 +P{¢}+P{¢}+P{¢}+Pst¢}—0 ‘ ~(24)

We C;hall define the. solutmns { é } satlsfymg Pn () =0 (n =1,2,..... i .6, 7) a3
'ntb order wave. ' . .

- Let us take L~— l called the meafn free path of radlatlon, as a charactenstlc length

, m the Flow field and we define the uon—dlmensmnal quanmtles

. o 3 - o 2 ; 2
- x -~ apt - ERIIY ay - Oy
mE= W = e == Aple, g5 =% s % Sy
1= 6{.3" tq L = T s (153 ‘ ’.’(BT?.-, a:‘ dmz s |
_ g LooF o o B R S
- c ay : ap : :
== F= e
a;n : ar \oc . aT . . :

We also m’croduce non—dlmenswnal parameters Prandtl number Py and Reynold‘
number R, as: ° S A

f}LR'y . . ..a'T.Po /. o )
P ”‘K(y_l) B = o :(25)

Substltutmﬂ (25) and (26) m equatlon (‘73) we get Eale : P
| 2¢y
‘L1D4D'¢“‘l4: R, LlLD¢+ (,D’2 ( + chr)pz)pzzya¢}
r

‘ - 9P, ¢cR, -
+‘52RP L L D' §— P"”—-LD?D' ac g :
o Y 2
- | . | y(%+_) R —Nj :   2 ‘a2 2
‘ ’9 R, 2 2 fRePral c”
(R g e
W4 e o\ oo BEECE (6 a2 ) i
((w:wl)gz‘m”’l?,z 1,32 ‘f‘+ 4y (é% 7 —1)¢ LsD'f’»?‘

W%?(1+§€ (1+_—> D2 ‘ ! a D" D2¢

. ‘]_{_ ( +1)

+ {‘w(l + Qf) (D’2 —a 21)2) D"ﬁ-lr =0, Coen

where T ' : e . Lo :
L=D" 5D Ly= D2 D2y L,=D"— a2D?

I..____? = ¥ -
D = at’D'f' a:%:‘

ol T Ta Y on ey ey oy
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“Substituting ) —oilei—F5) ‘ , (28)
in (27) , we get the dispersion relation as :

o B - A 3 2 3. (et 10 g\ -
i 3 )Tk ife{ltge’ ) —gh\3T3R, )

3., 5 3 ~9 5 . —( 3 I - !
+74Rec2+27) R32a12c2}+‘1,{-33+w(2-(—)]382 2 a52_l_a1 05Re ‘|‘goRe+é2)}]

3

o 27T — 3 - - ; - Lo
+"Ic2[ 150 Be ot —55 R aPe? (1 + 2—?) w? — l—g R2c* alw?

- 9. - -, 2T - —— -
— me @2 w5“’wz~«2—6,Rec2 w? — gquuI“‘ w? }
. 3. .= 9 - 3 ~ 6 - -
—f = 2 52 > 2 4.2 — _
+@{ (20Re*’+20Re7?%‘5Re“f'*5 ‘JRG)-‘”a
—_-. 9 - i\ 9. - 97 Y\ -
pair pnea (1e @] & [(Sreans Sues) o

59 - 9 - 12\ —g
+@{2—(')R32w——2—6R22\62(1—!—-%}}—-)&)8}]:0.' ' (29)

Equation (29) is a dispersion relation in non-dimensional wave-number % and non-
- dimensional frequency &. For a given value of @, equation (29) is a sixth degree polynomial .
in ;. The roots of this polynomial equation are of the form A %, Z, and 4 7,
where %, s ks aTe complex quantities. The positive and negative signs before each
value suggest the possibility of propagation in positive and negative directions of z-axis
and the numerical values (see Table 1) and asymptotic values for small & and large & of
7 are such that real and imaginary parts of any of these six roots have opposite signs so
that whenever we follow any wave (propagating in positive or negative direction of z-axis)
its amplitude always-decreases. Thus, in general, three distinct modes of propagation
are possible. In the absence of heat-conduction and viscosity, we have only two distinet
modes of propagation viz. (¢) radiation induced waves, {47y modified gas-dynamic waves,
The three distinct modes of propagation are (¢) heat-conduction and viscosity induced waves,
(43) radiation induced waves and (ié) modified gas-dynamic waves. If we take R, -> o
keeping P, to be constant then we find that equation (29) reduces tothe equation of
Prasads®. : '

. .1
If f= kg -+:f, then the velocity of propagation is 7:); and damping distance is Tl

RESULTS AND DISCUSSIONS

Here we are solving a dispersion relation (29) for various val1_1fs of . We will get three
distinet values of wave numbers %y, Fg Js-2s a function of o corresponding to three
distinct modes of propagation. A numerical result is obtained by using a method of Van A,
Moauleyt. The results are given in Table 1, Co :



e

- Forverys smallqud for verylargew qua ( )4
ftmctmn of @, T

Case (6)—When bl 1@ Very small \ ;
Substﬂmtmg T B . , L gt
I *§;%+na4mm);“if”f~ U

in(29)., weget. - .

¥
.

- and for z, # 0, we get“’ S i s SR
P . e, 2 2 2 AT s - T -
“1=‘—@'13(£—%‘7 +-)‘+ e g ¢

LW

Ty = :tkt-—— - 3_, %{2‘(&% )+20 S = 5

5
‘ ‘ - ; 1
Theonw) ]

T];ms 7013 Y A&; , where A is a constant Tdependmg on Re, a,_a

kyy = (3 + R6 a«l) and is mdepend;ent of @.

Thus dampmg dmtance for ﬁrst mode of propagauon is md@pendent of . and wave
velomty 4 isalso mdependent of @ upto the first order n@, ThIS mode of propagatmn is

due to heat conductlon aﬁd VlSOOSIty

When a:(, =0, we wxll get two remammg modes by assunnng that
cand L . ST A (82
R ' kgv wxl w2+01~233) )ve R o

. and substituting» in (29) and qu,ating Véi)&)fﬁéienﬁ"of lowest Fowér of @ to zero. :
) L. N R ' O 3 . o
4y R,z a5 (H-“l )

e 2 .

R =—int - ey
T -1+R-5-
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and - B AR St G kA R R L
P __i (!}2 - o e v . . P :
I’ ::' aGET o (39

\'From(33),kqlsacomplexnumberof type e e A I FCal S P
=+ (VD —wavﬁﬁ) T e

Where a is some numerical constant thh can be obtamed by putting numencal values
of g2, R, , 02, . The veloclty' 0y of second mode of propagatlon is
By = Vs >0 a8 &> 0

Dy -—.:-*w ) w\/,_....__

~

\{ i

' 1
Dampmg dlstance = = ¥ 00 A8 @ > 0

oa

Hence there is no damping to a wave correﬁpmxdmg to secondf mode of* propaga.tlon
and wave velocity, is 5820, . .

From (34) we have

;2_4 B BNCOI

« = -
Il)n == —_— p=—q
7 e

5 . Thus @ wwave correspondmg to. thu'd mode of propagatlon travels Wxth 1sentroplcv
sound velocity. ; : ;

Case (%)——-When @ is very large

" Putting | TR=ma

in dlspersmn relatlon (29). and equa&mg coeﬂiclent of hlghest power of & to zero weget

' fc(a\/'“-m\/") N
and R f R = ,"(38)

These are two distinct wave numbers correspondmg to two dxstlnct modes of- propaga-‘ k

- tion. In both these modes of propagatxon

g Vs d‘ Ca e
PV = —= = — gl ’0 f——frcencanlli-— .
17 ke 1] 7 ek b

. vl-aooand 'uz-—><coas B =00,

1 oed
e W*

. JDampmg dmtancg tends to zero as ;w\—* W . ~; s

Ferwe el I LIRS S A
N - S i L] ! t

Damping dlstimce for two modes of propagatlon is
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To obtain third mode of propagation for very large value of w, let us put k
I
F=methe (39)

in dispersion relation (29). The coefficient of ;7 becomes zero and coefficient of 3°
equated to zero gives us L

- .6
1=—1 = N
c
]:;2:::-2 —2'(1-—-'&%‘)
¢ )
kR=—\{_§,a_» and by = —+/3
[4]

- @ 5

Vo == o = —5=

T kR V3B

is the limiting value of the velocity of third mode of propagation. The correspdndihg‘
damping distance for this mode of propagation is ’ ’

ISR S
k1 V3
: In Table 1 we have shown the variation of wave-velocity and damping for three
distinet modes of propagation for R, = 10* and various values of w. :

We note the following points from Table 1 and limiting ocases :

(3) The waves corresponding to the roots %, and , for @ - 0 propagate with the
characteristic speeds of the third order wave operator. The damping of the two waves
for @ -~ 0 is zero. v , 7 S

(#) The high frequency waves (w - o) propagate with characteristic speeds of the
seventh order operator. '
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