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The laminar flow of an unsteady viscous liquid with uniform distribution of dust particles through
a circular cylinder under the influence of exponential pressure gradient has been investigated.
Two interesting cases have been discussed and analytical expressions for velocities of fluid
and dust partieles are obtained.

In the recent years the attention of researchers in fluid dynamics hasbeen diverted
towards study of the influence of dust particles ov the motion of fluids. Saffman? Las dis-
cussed the stability of the laminar flow of a dusty gas in which the dust particles are uni-
formly distributed. Michael? has considered the Kelvin-Helmohz instability of the dusty
gas. Later, Michael & Miller® have investigated the motion of dusty gas with uniform
distribution of the dust particles oceupied. in the semi-infinite space above a rigid plane
boundary. Two cases when the plane moves parallel to itself, (¢) Simple Harmonic Motion
and (¢¢) impulsively from rest with uniform velocity, have been discussed. In view of such
interest in this aspect of study of the-subject the laminar flow of an unsteady viscous

liquid with uniform distribution of dust particles through circular cylinder, under the
influence of exponential pressure gradient, has been discussed. Analytical expressions for _

the velocities of the fluid and dust particles in two different cases are obtained.
' EQUATIONS OF MOTION

The equations of motion of a dusty, unsteady, viscous, and incompressible fluid are3 :
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Where u, v denote the veloeity vectors of fluid and dust particles respéctively, P
the fluid pressure, m the mass of dust particles, N the number density, K the Stokes

resistance coefficient (for spherical particles of radius ¢ is o w e ), p the viscocity of fluid, -

p the density and » the kinematic coefficient of viscocity.
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FORMULATION AND SOLUTION OF THE PROBLEM

We shall investigate the laminar flow of an unsteady viscous liquid with uniform dis-
tribution of dust particles, through a circular cylinder of radius a, under the izfluence of
. exponential pressure gradient. Since both the dust and fluid particles move along the length

of the cylinder, the motion is symmetrical along the axis and the distribution of dust

particles is uniform. The velocity distributions of fluid. and dust particles are defined res-
pectively-as : '

u, = 0, ’u2=\0, ug = wy (7, t) ) (5)
=0, =0, o=uw(,t) (6)
\ N = N, a constant ) : (7)

where (v, , u, , u,) and (v ; Uy ; ¥y ) are velocity components of fluid and dust porticles.

Using (r, 8, 2) coordinates, the eqq.a.tibns (3) and (5), (6) and (7) and equations (1)
and (2) can be expressed as: I
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Taking R = - and eliminating w, from (9) and (10), we get :
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From (8) and (9) we have
, e _ :
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Since we have assumed pressure gradient to be exponential we can take

o) =a ¢ it
w (Bt =f (B F 1)
wBY)=g®e (14)

 where ¢ afid A are real constants, Since both the fluid and dust have no slip at the wall of the
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cylmde:g and their velocities are ﬁmte on the axis of cylinder, we have the following
boundary conditions :

| F)y=0 | S (1)
gm=0 | (16)

-and both f and g are finite on the axis of cylinder. = Introducing following dimentionless

parameters
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where 7 = % i8 the relaxation time of dust particles ; | = M is the mass con-

centration of the dust paitic]es. L
Using relations (12) to (14), equations (10) and (11) are simplified to

g (1—2) = f C : (17)
d2 1 d

The solution of equation (18) is
f(B) =4 Jy (nB) + BY, (nR) —

where J, and Y, are the first and second kind of Bessal funetions of order zero* and 4, B™
are constants to be determined, subject to the boundary conditions mentioned above
Using boundary condltmns we have
Now we shall discuss two interesting cases of very small and very large value of n.
Case I: When | n| is very small. - .

We have following asymptotic values

o R

- Jo(nR)w(l-—nf)
n\ . . .

Jo(n)z(l——i—) ' (20)

By virtue of these equations, (19) is exp:essed as
n? (1 — R2)
JB) =2 "

Therefore w, and w, can be expressed as

- | we (R, 0) = (4'9” )(1,..1{2) @

/“4“.
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, — a8
iy (B, 1) = G (22)
These are the expressions for velocities of fluid and dust particlés in this case.
Case 1] : When | n | 18 very large . h
Taking n? = — n'2 the solution of differential equa.tibn (18) can be expressed as |
f(R) = CI,(WR) + DK, (v'R) — @ @)

where I, and K, are modified Bessel functions of Ist and 2nd kind of order zerot, C and
D are constants to be determined.

Using boundary conditions (23) can be written as

I, ('R) ;
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Bince | #’ | is very large the asymptotic value of I, (n'R) and I, (n’) are given by*
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In this case the velocity. components are obtained as
. Q n’ (B—1) — 3¢
w. R, t) = —— e —_ 4
1 (80 =T% { VE ] )

w By = | SV R e

CONCLUSION

From equations (21) and (22) it is seen that both the fluid and dust particles which are
nearer to the axis of the cylinder, move with greater velocity in the first case. Since 7, A?
are positive, the velocity of dust particles is more than that of fluid particles. When the dust
is very fine, the relaxation time of dust particles decreases and ultimately as » — O the
velocity of dusty.fluid becomes that of clean fluid in both the cases.

If the masses of the dust particles are small, their influence and. the fluid flow is reduced,
and in the limit as m — 0 the fluid becomes ordinary viscous, and we get the solution of the
laminar flow of a viscous liquid through circular cylinder under the influence of exponen-
tial pressure gradient.
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