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The shape of & gas bubble initially formed by an explosich or by some other -means -in a liquid
just before it starts’ to move upwards has been determined by considering surface tension
and the pressure on the interface. The external pressure is taken to be non-uniform due to the
presence of gravity and the internal pressure is assumed to be constant. Two cases have been
considered. In the first case of a two-dimensional bubble an exact - solution has been obtained
whereas in the case of & three-dimensional bubble only an approximate solution could be found.

There are various theories to describe and explain the different phases of an explo-
sion under water, such as detonation process, shock wave propagation and oscillations
of the gas bubble. The gas bubble after a few milliseconds of detonation or formed other-
wise starts migrating upwards or towards a rigid boundary in the vicinity. Generally
the shape of this migrating gas bubple is determined by ignoring the force due to gravity
or in other words assuming the pressure field outside the gas bubble to be uniform, i.e.
taking the shape to be spherical. - But due to the presence of gravity the outside pressure
field is non-uniform and js responsible for the distortion of the shape of the bubble, Experi-
mental observations of Davidson & Schuler! also show that it is incorrect to assume the
bubbles as they form to be spherical or circular. In this paper we have studied the re-
sulting distortion and obtained the expressions for the shape of the bubble by taking
into account surface tension and gravity. ; o :

 Walters & Davidson?® have examined the subsequent distortions in the case of a two-
dimensional bubble formed in an inviscid liquid by assuming the shape to be circ ular,
Since the forces due to surface tension are considered to be negligible, their theory would
be applicable to th e study of the motion of a large rising bubble under the force of
bouyancy. '

In his attempt to determine the intial shape of the bubble, Moore? observed that
due to the non-uniformity of the outside pressure it is very difficult to solve the equation

Por— Poa = TJ o : (1)

where J is the total curvature of the bubble surface, I' the surface .tension, pg,
the constant internal pressure, and pg, the external non-uniform préssure. There-
fore without solving (1) he assumed the bubble to be an ellipsoid of revolution.
The assumption is not justified as the condition (1) is not satisfied at every point of the
bubble surface. However, this has been made to satisfy by Moore at those points of the
surface where the total curvature i$ maximum or minimum,
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Recently, Rosenthal* has studied the shape of a bubble at the axis of a rotating
fluid by considering the surface tension and the constant pressure difference ‘at the
interface, i.e. without taking into account the effect of gravity. The shape is assumed to
be spherical when the angular velocity of the liquid is zero. .

In this paper, the shape is determined by considering together the forces due to
surface tension and gravity. This amounts to the solution of equation (1). The external
pressure field is non-uniform due to gravity, whereas the internal pressure is assumed to
be constant. The problem has been examined for two cases when the bubble is
in the static equilibrium. In Section 1, the case of a two-dimensional bubble due to
a line explosion is considered and an exact solution giving the bubble shape has been
found out. The size and shape depends upon the parameter involving the internal
pressure, the depth of the origin from the free surface and the surface - teasion, In
Section 2, an approximate shape of a bubble formed by a point explosion has been
obtained. This approximate solution clearly shows the effect of gravity on the .
shape of the bubble. In both the cases the force due to gravity manifests itself by flatten--
ing the lower portion, of the bubble. « A ‘ o

"SECTION 1
Two-dimensional bubble

A horizontal line source in water generates a cylinderical bubble having vertical
circular section in the absence of gravity. But due to gravity the pressure field outside
the bubble is non-uniform. Thus in the presence of gravity the vertical section of the
bubble surface will be a two-dimensional closed curve. Let the line source be along the
a-aXis, 2 be the vertical axis and y be the axis normal to the zz plane. Let p,, be the
uniform pressure inside the bubble. The pressure outside the bubble can be written as

gpa (h —2) or pg — gpy

where g is the acceleration due to gravity, p, the density of the outer liquid and % is
the depth of the line source from free surface. -

The shape of the interface is expressed by balancing the forces due to surface ten-
sion and the pressure discontinuity at every point of the surface. If T is the interfacial
zr/ : ;
T+ 7P
zl’
1 + z"2)3/2
where dashes denote the derivatives with respect to Jo
Equation (2) can be rewritten as

surface tension and

is the curvature for a section of the bubble, we have

T = (Por — Po2) + 9Pz - (2)

d s —i_ Por— Poz gpa? . g
——— [1-|—z] = S + 23 | 3)

Integrating we have

. _/ . . . |
-—[1—[—2’2] i______ (p()l Tpl)z) z+ ggzvz ) {4)
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where F (¢, k) and B (q&, k) are elhptlc mtegrals ef first a.nd second kmd respectwely
Writing z from (6) in terms of k we have

zé—~——=[«/2-2k%ﬁ¢ «/2—7#]' | | ‘ft"(lf))_'

kv
f and z can- be made dimensionless by mtroducmg
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§= 710— [ V2 — 2P sin? § V2 kz‘] | o (12)

Since there is no other external force except gravity, the bubble will be symmetri-
cal about the vertical ¢-axis. This is also evidert from the values of % and &
given by (11) and (12) by the fact that for a particular value of ¢ there corresponds
two values of », which- are equal in magnitude but opposite in sign.

We can get different shapes of the bubble by giving various values to the parameter

k (="Z‘-’7§E‘-ITZ ) These will correspond to the different values of A oniy as

‘gravity and surface tension. It is  also
observed that the size of the bubble is in-
versely proportional to the square of the
pressure difference on the boundary, and in
the limiting case as k>0 or A%2/B —+ o
in (11) and (12), the resulting bubble re-
duces to a point only, which is an ideal situa-
tion. This is otherwise obviousfrom equation
(2) also that a point bubble being of infinite
curvature will be able to withhold infinite
pressure differences. This can be verified
from Fig. 1 that the flattening of the lower
portion increases as the ratio A42/B decs
reases (or as k increases) and for larger
-values of A2/B the shapeof the bubble be-
comes circular. We get from (7) that for f to
be real, £ has to be less than unity always or
the ratio 4%/B will always be greater than 4.

_+ Fig. 1—Shapes of bubble for various values of k.

~ The distortion in the shape of the bubble will be appreciable when 4, which is directly

proportional to the pressure difference i.e. py — gpyh, is small. This will correspond

to various physical situations of the bubble, For instance, when it is near the - free

- surface and inside pressure is also quite small, i.e. when the size of the bubble is quite large.

This is otherwise also quite clear as in such a case the variation in hydrostatic pressure
‘over the bubble i@ia.ry is quite significant,

e

SECTIONII

Here the shape of the bub‘ble will obviously be a surface of revolution. Keeping in
view the non-uniformity of the pressure distribution outside the bubble the governing
equation of the bubble surface will be ‘ o ‘

¢ [__f _ Wa—p)f . geif | 3
e e e e 1)

-

B is a physical constant depending upon

-
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where — — | ——= | is the total curvature for the surface df revolutionr =j(z)
7 LT Rt - e
and the notations afe the same as those in the first case. ‘ -

Equation (13) can be made dihlensiohleés .by introducing th_é following set of varia-

bles -
f z Por — Pos | 2 9ps 1 ‘
= ~ = —— =0 20 = o 1
"7 R 6= g where "N =AM or =35 (14)

where % is the total curvature at z = 0 when gravitational foree is ignored.
Equa.ﬁon (18) in the non-dimensional form can be written as

1 d

. ] g '
= =2 2¢ 15
7 dn[(1+n‘2)* ] A (19)
where V €=M— =~1—22—- &ﬁdﬂ':ﬂ ¢ k/ ‘ (16)

(Poy — Poa)® b ¢ i
We have found it rather difficult to get the exact expression for ¢ as a function of
n by solving (15). -This difficulty is due to the presence of £ in the right hand side
of (15). ’ - ’

HoweVer, a solution which satisfies (15) approximately has been found out. |

Since the interface is a surface of revolution, let it meet the axis of the bubble

(z-axis) at 4 and B.

The lower portion of the bubble surface will be flattened due to gravity orinother
words the survature at 4 will be greater than the curvature at B, as showa in the Figure,
Thus the shapes of bubble near the points
Aand Beanbe assumed to be ellipsoids |
of.revolution as :

A R ™

n2 2
z %:1 (17)

o/
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where | OA | = a and | OB | = B and £ is the radius of the horizontal circular -
section through the origin. When the 'gravity effect is neglected, (17) and (18) coincide’
with a sphere of unit radiusie. £ = o = B==1 and the subsequent effect of gravity
is manifested in the changed values of these parameters, B o

The justification in assuming the forms (17) and (18) lies in the fact that the cur-
vatures of these ellipses at 7 = 0 are of the same order as those of the section thiough
the axis of the bubble curface (15). The values of these curvatures are 1 + ex and 1 —- €8
at 4 and B respectively. - The values of o and B can be determined by comparing
(17) and (18) with equation (15) in the neighbourhood of 5 = 0. Thus we find that

Y

B e P i
*= 1— ek? AR B - 14 ek ( )
It may also be added that at § = 0, % comes out to be the ’same‘ 'when derived - -

from (17) and (18). But the curvatures of these vellipses at £=0 are not the
same. So by using (15), » has been expanded in the neighbourhood of ¢ = 0, in
the ascending powers of £. L ‘ . '

A

This gives :

L 8 (1 & g1 12 3 S
1=kt (2 k] fq—r(zr C ) - 20

where o g0y =1k

Since & depends upo}l_ e only, its value can be approximated by appiyiﬁg
perturbation method to its initial value unity. In this way the value of £ comes out
- to be ' o : ’ i

) . k =1-— 5 | (21)
where the powers of € higher than the first have been neglected.

Considering this value of %, (20) can be rewritten as ; g

% R I IS R S

The values of « and Bcan also be expressed in terms of ¢ by substituting
(21) in (19). o |

It is observed that in the neighbourhood of & =—=-0 values ¢f 5 obtained from
(22) approximately. coincide with those given by (17) and (18). Thus these _ellipsoids
of revolution satisfy equation (15) not only in the neighbourhood of 7 = 0 but also
_ are fairly good approzimations throughout the contour ie, for Q <y <k, -

-
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" Itis apparent from equation (15) that
the curvature of the bubble surface decreases
when ¢ assumes negative values. This is
borne out of the fact that the force of
gravity will tend to flatten the lower portion
of the bubble. In order that (15) should
represent a closed contour, the curvature
should not change its sign and thisis possible
only when ¢ <1 where § is negative for
the lower portion. As € -> 0 ie.when the
effect of gravitational field is neglected, (15)
represents a spherical bubble. The effect of
gravity becomes more significant at certain
situations depending on the size and
, location of the bubble. These situations can
' Fig.2-——Shapes of bubble for various values of €. e studied by giving various values to €.

It can be verified from Fig. (2) that-as the value of ¢ is increased from -1+to -3,
the flattening of the lower portion also, increases. Also, it is observed from Table 1 that
with the increase of e, which is a consequence of the fall of pressure difference at the
interface, the volume of the bubble also increases. The maximum effect of the gravi-
tational field is realised in that physical situation where the size of the bubble is quite
significant and it is situated near the free surface where the variations in the gravitational
force over the bubble boundary are maximum. - ' .

N Tapre 1

AN
NON = DIMENSIONALISED VALULS OF g, 8, & & V FOR VARIOUS VALUES OF €

R R R, B
—— —_— e b e
€ N bO * : ’bo B . ’ bﬂ boa 4
1 ) +30567 - 24243 -29513 -10210_
*2 © 41730 -23851 -38750 - 20420

3 : 49204 +16431 43817 26153
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