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MINIMAL TRANSFER TRAJECTORIES WITH OPTIMUM CORRECTIONAL
MANOEUVEE PROGRAMME

‘ T. N. SRIVASTAVA

Defence Science Laboratory, Delhi
(Received 28 Nov. 1967; revised 16 July 1968)

Inter-orbital transfer trajectories with correctional manoeuvres afe investigated with the
object to reduce the energy consumption to the minimum in the transfer operation. Various
cases arising out of the required missions have been analysed and it is demonstrated that cotan.
gential Hohmann type trajectoties are mot minimal in transfers with correctional manoenvres. -
contrary to the case of inter-orbital transfers without correctional manoeuvres, Transfers with
no corrective thrusts have also been discussed and laws for optimumn heading angles of the l
space vehicle are derived.

-

NOMENCLATURE

V = velocity "

¥ = heading angle, that is, the angle between ¥ and perpendmular to the radius -

_ vector at the point
r = radius vector S .
6 = vectorial angle
" b = twice the aerial velocify N
E= eccentricity '

o = angle of inclination of ‘the major axis of the tramsfer trajectdry measured with
respect to the reference live, that is, the line passing through the force centre
(focus) and the pericentre of the launch orbit

= gravma.t_lonal constant times mass of the attracting body
T = total transfer time from the launch to the destination point -
-t = time ! )
AV = impulsive velomty change

Subscripts
1—denotes values at the launch point
2—denotes values at the destination point
[—relates to values correspondmg to space vehicle at the launch point
d—relates to values correspondmg to space vehmle at the destination point
+ - p—relating to pericentre

a—relating to apocentre
97
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" INTRODUCTION

Because of unavoidable operational imprecision at the time of launch, the path of a
space vehicle is observed to diverge from its precomputed trajectory and correctional
thrusts are therefore applied during flight to annul the vehicle divergence. An optimal
programme for the correctional manoeuvres so as to consume the least propellant has been
investigated! by minimizing the mean characteristic velocity of the correctional manoeuv-

res 1. It is shown that

e i m To N
where m is the statistical mean value of the error in the impulsive velocity change brought
about at the time of launch, % the statistical mean value of the subsequent correctional
manoeuvres, 7, the total time of flight of the vehicle from the given launch to the
destination point, s (a preassigned value) representsthe time interval between final correc-
tional manoeuvre and arrival of the vehicle at the target, and e is the base of the natural
logarithms. Prior to launching, m and k are assumed to have been determined.

If, however, m > ke, then | |

where 3 represents the time interval between the first correctional manoeuvre and arrival
oi the vehicle at the target and is a predetermined quantity. Since in this case the first cor-
rection takes place as soon after launching as is practicable, =; can be taken practically
equal to 7 in relation (II) which can be thus written as

Since o is governed by the operational exror at the launch instant and % by the impre-
cision in the divergerce detection and correctional manoeuvre instruments, it is logical to
assume as a consequence of results (I) and (IIT) that for similar launch operation procedure
and same set of detection and correction instruments with some preassigned acceptable
value to s for all ballistic transfer trajectories between two specified launch and destina-
tion points, the total transfer time =, along a trajectory will serve as a measure of the

corresponding Wi, along that trajectory.

In the transfer operation, energy will have to be spent in imparting impulsive velocity
changes at the launch, the destination, in correctional manoeuvres during transfer phase.
Our aim will be to find out the transfer trajectory which shall be most optimum in the
sense of least expenditure of energy in the entire transfer operation. According to the
mission requirements three cases can arise : )

(A) “Quasi-minimal transfer trajectory of the first type”’ defined as that along which
least energy is spent in launching opération and, correctional manoeuvres.

(B) “Quasi-minimal transfer trajectory of the second type” defined as that along ,
which least energy is spent in correctional manoeuvres and in the attainment
_ of the orbital velocity at the destination by the space vehicle,
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(©) “Mmmml transfer tra;eotory is that which requlres the loast energy consumP-
tion at the launch, in the correctlonal manoeuvres and at the destination.

Lastly, the problem of minimal transfer trajectories with no correctional manoeuvres
arises as degenerate case of A), (B) and ( C) The above mentioned problems have been
investigated in the present paper.

QUASI-MINIMAL TRANSF R TRAJECTORY OF THE
RST YPE : ‘

If equation of the transfer trajectory be (

Wy = K[1 + E cos (6 — )] , (1)
where, ~ - u=1fr
then by conservation of momentum prineiple o,
, whdt =80 . @
Equations (1) and (2) yield ' ‘

) 1 h 3 ‘} _ 1—E\}, [(6,—a
res—n=g (i) [t {laEE) e ()
'——2(79,11-'1{(v—%—i_'—'f?i)%tan(01—2'—“)3;E»(l——-Es)ir

§ sin (,—a) sin (8 — «)
V1¥E coz (0, — &) 1+ E 0051(01 —a) }] ' @

The transverse and the radial components of the launch velocity can be expressed as Ty

Vl°°371=0.1/“1=ku1=%[1+Ecos(01"‘°€)] )
. KEuy sin (6, — a) ‘
V,sm'}’,—.__———"ul/(ul)2 =——h( 350 )0____01= 171 cos17, (5)
From equations (4) and (5), we have -~ ' '
: " V2sin¥, cos ¥
= 0, — tan— ! ! !
« 1~ tan [_(V, cos ;)2 — u, K ] - (®)
V3 2 . 13
- Ez[( ’u:K -—1) 003271+Sln271] | (7)
The velocity change reqmred for the space vehicle to adopt the transfer path will be
[712 + Vl - 2 Vl Vl Cos (yl - ‘y]_)]é (8)
The relationship between’ ¥, and 7; is given? by ‘
— _ 2
72— K'u1 [1— cos (6, — 6,)] cec? 7, ©)

[R, -+ sin (6, — 6,) tan ¥; -— cos (6, — 6,)] d

where RIS —;L Cand  uyfuy = R,
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» Substltut:mg the value of V: from eqaatxon (9)in equatxons {4), {6) and (7 }, we have

1 ‘ K{l——cos(B — 0.} i
b —[ u, {R; + sin (8, — 6y) tan )’;»—lcos (02“01)}4] - (10)

L 1-- cos(0 — 8;) - -
=0, — -1 1
e = e o W
E =[{1-— cos (6, — 6,)}* sec27,~2A‘1—cos‘(02701)}—!—\{12]* 14, (12)

where A =R, +sin (8, — 6) tan ¥, — cos (6 — 6;)

For the minimal transfer path characterlsed by the minimum energy consumption at

launch and in - correctional manoeuvres (Woin + A 'V,). should be mmlmum Henco
, taking into account the Teasons given in the Intro:luctlon we have,

a(logT) . &(AVy 0 RO  ?(13)'

ke — :
a7, &7,

* Using equation (3) and (8), eqiiation (13) gives

1 B 3 , . | . , ’
$ (") = 33 ( m) J[F(‘”)e o, Tyt G(”ozez"G(B)o:ol]

1 8k B #E1, T . oV -
+ 8T [7? oY, T (1—E) a7, }+ kepV, [“V‘, o7,

—V, Jl :)’zl cos (V;— ) Visin (v, — y%)” =0 | | . ‘}4)
where . J ‘ : | . . =
> l_l_E 8'0( 0__“ . I—E %
F )= - sec = .
1 +E 4 (1 — E)tan? (%&) [ &vy ( 2 )( 1+ E )
éE 0—a\ I T ;
i g t?n( 2 ) (1 — B} (1 ~1—"E)3/2] (15)
o R(Q—Ey ) i -
G\(e) = T FEcs 0—aF [ 07 1 ) E + cos (6 —a) l + in (8 —a)

From equations (9) to (12), we obtain ~ —-

2V, Ku {1 — cos (0, — 6,) } sec? 7’,. [ 4 tan v, 1 sin (6, — 6;) sec? 7, ] :
B - . f.k:‘ 'l .

v, VA 20
- : ' oan.

"J
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. ' @;:_;f_ksinw(el—.—-ﬂé)sé@yl’ ’ T o R
, 7 24 E (18)
fL — i [{ ].’-:-._00 7(02 —_ 01)} (Rl — 1) cosecz 'ytrj
24 [T = R,)?cot? ¥, — 2 {(I — Ry) cot ¥; sin (6, — ;) + cos (8, — 6;) — 1}]
| | / (19)

aE sec_z.Y‘ 1 — cos 9, 0} ; : |
__ e’ 7y [{ . '0A§32' ’1)4}: {(l_cog (0‘2'__61)') tan ¥,

a7 S |
— sin (6, — 8;) } + sin (6, - 8, (_;T —E )] o (20)

Substitution from equations (3), (8), (9 to 12) and (17 to 20) into equation (14) will

- reduce equation (14) into an equation-in the unknown ¥; which can be numerically solved

to yield the optimum value of ¥,. Having known optimum ¥,, elements (, o. and F) and
other parameters of the quasi-minimal transfer trajectory of the first type can be obtained.

If the launch point be the pericentre of the launch orbit and apocentre of the destina-
tion orbit the target (taking launch and destination orbits coplanar with major axes aligned),

Tup=p 5 6 =0 : St

’ /
Uy =Uga ; Gp=7 ' @

Evidently then ¥, = 0. Now if cotangential Hohmann type trajectory be the minimal
transfer trajectory, ¥; = O must satisfy equation (14) obtained after substituting in it
equations (21), (22) and 7, = 0. Putting equations (21), (22) and¥; =7 =0 in the
above respective equations. we obtain . . o

V.= o/ 2Ep _ where Ry, = 2% (5)
‘ Rl,p + 1 . ?'_ll'p .
, 9K ¥ . .
] == s =0 . v w
b [ w1y (Rip T 1.).] co% : @
1—R, - o [K(Rip+1) PP
e 2 T = 4 " >
E= 317, & [ o1, g ] | () ¢ (23)
R Y et T Bm 2 .
AV =) 2By _y,, 2 o T (iv)
t Rip+1: oo = Rp—1
oh __ @V _ oE _ : @ |
14 1g) oY1 o ' -j

Substituting equations (23) in equatibns (15) and (16}

, 2 (Rt o g 1

F (é)o -0 Rl,p i 1 ’, . F (0)9 —n == (Rl/,p)i (Rl,p — 1) (2) .
1@ _ . 2 oo @
(I»{}'P) LG (8)0}:0 o ¢ (0)0 = (R{,p)’} (El.p +1) )

—~
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Substitution of equations (23) and (24) inequation ('14) gives

v [ Bp 1 T 2B, + 1)
951'(0) '_[ 2I§Rl,p ] L 3

- # 0
(Brp w,g)% '

Hence it is proved that cotangentlal Hohmann type trajectory is not the minimal
transfer trajectory unlike the case of ballistic transfer without correctional manoeuvres,

(B) QUASI——MINIMAL TRANSFER TRAJECTORY OF TE'F
SECOND TYPE

In this case the velocity change required for tze space vehlcle to attain the orbital
velocity ¥, of the destination orbit at the target will be

AVy=[ V24 Vit — 2 V¥4 cos (g — %)t ~(25)
We cafl show that o 7 o
| | _ _KE . . ~ sin (0, — a) g
tan V; = e Vsm (6 —a) = m tan 7; | . (26)

Also from dynamical relationship
Vit=V2 42K (ug — ul) (27)
" Combining equations (25) to (27), we have

AVy = [V; V2 o 2K (uy — uy) — 2Vy{ V2 + 2K (ug — )}t -

c0s {[ tan 1 ( sin'((),, — %) tgn ‘)’z) — 7 }]* (28)

b R, sin (6, — &)

For minimal transfer trajeétory

ro2Ueg D) L 2(AV) _

, & 2! @)
which by equations (3), (25) and (27 ) is transformed into
B T W, [ 1—Vyc08(Ys—"7,) L
(1) = C ) + 27 [ iOry? ( {Vﬁ T 9K iy — )} ) *
{Vﬁ + 2K ( ”a %)} 72 av sin (yq — 7’2)] (30)
where
1 b 3 A
COV= 1 ( T \) [ O _ —EOy - P TGO, _ g~ G0, 01] .
o . E o : g
+3T[haw T ] |

Substitutingfrom equations (9), (17), (26) and (28) in equation (30), the latter is an equa-
tion in the unknown ¥, which after numerical solution w111 give the optimum heading
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angle 7; and hence elements and other pé.ré,meters of the transfer trajectory can be evaluat~
ed. Proceeding in the marner as illustrated in'case (i), it can be shown that in this case
also cotangential Hohmann type tra]eo’oory is not the minimal transfer trajectory.

(C) MINIMAL TRANSFER TRAJECTORY

In order that the transfer trajectory be minimal ~

2 (log 7) 2 (AVY) | 8(AVy)
ke a7 + ~on -+ P ’_——0 | (31)

' Using equations (3), (8), (25) and (27), equation (31) yields
T 8V, [
“Reovi | AV L

Vi— V,V; €03 (Vg — V) ] R [ V.V sin (v{ — %)
V& -+ 2K (up — uy) 3 ke A
24 14 : t

e R U e RS

from which optimum heading angle can be evaluated and hence elements of the minimal

t;:)an sfer trajectory and optimum launch velocity become known. From equation (26) we
obtain,

e
o= () [wr om0t

b () = O (r) + L2V [71—7,00: (7

E . 2
3, — E c0s (63 — o) —>_

. — 2K Bughsin (6 — o) z‘;l] . (33)

Substituting equamons (21), (22) and
in equations (26), (28), (33) and using equations (23) we obtain

-

: —V . 2Kw, T
Ya=0, AVy=Vy— 2K (e — ) + 202 I«
e e Uy e “
and ‘ : (35)
20 1 .

g B Ry p . (#)
Henoe by equations (23), (24), (34) snd (35), equation (32) yields
$:(0) = 4, (0) # 0 | ~

Therefore, again cotangenmal Hohmann type trajectory does not represent th
o tra]ectory ype Ty p e munmal
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., MINIMAL TRAJECTORIES WITH NO CORRECTIONAL
; MANOEUVRES

The problem treated in ref. (2) with additional knowledge of the elements of the
minimal transfer trajectory, comes out as a particular case of (A) when in equation (13)
we drop the first term, and thus using equation (12), we have

14 oV —V, [7;% cos ('}’z — %) — Visin (¥) — ¥;) 1 =0 (<6) .

Using-equation (9), equation (36) will be transfoimed into .a quartic equation in
tangent ¥; which can be numerically solved for 7, and therefrom elements and other
parameters of the ophmum transfer tra]ectory can be obtained.

, Putting 8, — 6, = # in equatwns (9) to (12), we have

V=1L sex Vs _ - c (%))
h=ILhy G
T 2ty ] .
=6, —tan—! | —— — wi) L (37
' oc‘ [ (I—Ry) }( Vg 60
_ [4tan?y, + (1 — Ry .
, E = &) - ,(w),
where ' . ’
2Ku, \3 : . -
L= ~——L) - (38
3 ( Ry +1 (8).
Usmg equations (36) and [37(¢)], we have ‘
fan 7, = (_5%‘.11.) > (39)

Having known ¥, , equations (37) then glvé Yie reqmred elements of the minimal trajectory
characterized by least exit energy at the launch point. Here L has a significant interpreta-
tion, Equation (38) suggests that L is the orbital veloclty at the pericentre (Hohman.n
velocity) corresporiding to the orbit whose pericentre is the launch point  (u,, ;) and
apocentre the destination point (u,, 6, + #). Hence from equation (39) we conclude
that when 6, — 6, = =, then: Tangent of the optimum heading angle of the space vehicle
at the launch pomt times the corresponding Hohmann velocity = Radial veloclty corres-
ponding to the launch orbit at the launch point.

Further, it is ev1dent from the equation [37 (i)] timt the aerial velocity of the transfer
trajectory is independent of the Jaunch angle and is-equal to half the launch radius vector
times corresponding Hohmann veloclty y

V= 0 equation (39) yields 7; == 0. Hence by equation [37(2)], optunum V; When.
0g—b, =mand ¥V, =0isgiven by L, a result derived in ref. (2). ,
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Letting tan § = 3 tan /(1 — B,)-and combining equations (26) and [37(3i)], wo
have , . - ' ‘
: tan ¥ - ;
ton ¥y = —.—p- - ' \ (40)

Hence when launch and destination points are separated by an angle » , tangent of the
optimum heading angle of the space vehicle at the destination point — — (tangent of the
optimum heading angle at the launch point times the ratio~ of the length of destination
Tadius vector to that of the launch radius vector). . ‘

When 6, — 8, = = , taking the destination point as the launch point and vice verss
consequently replacing suffixes [ and 1 by d and 2 respectively in the corresponding equa-

tions; R, evidently would mean. 1 ) equations (9) to (12) yield ‘

R,

9Ku, T4
Vd:[ﬁz_l_] sec ¥y = R, Lsec?, . (i)}
h=Lw m')hm
‘ 2R, t: ‘
m=n+01~ta}x*l[fié——i—nlzd—] L ()
o (@R tan )2 + (R, — 12}t :
E= o | (@)

C’ombiping equation [41(s)] with equation (36) (obfained after changing the Sufﬁxes‘ as hY “
\

menticned earlier),

tan Va = M

: Having known 74, equations (41) determine the elements of the minimal trajectory re-
quiring least entry energy at the destination point. A comparison of equations (37) with
(41) leads to the interesting result that although in the two cases the minimal transfer

paths difter but their aerial velocity remains the same. C

_ Putting ¥, = 0, equation (42) gives ¥; = 0 which when substituted in equation
[41 (¢)] yields optimum V; = R, L. -

Lot tan 8 = 2R, fan ¥4f(R, —1). Substituting equation [41(i%)] in equation
(26) and remembering the reverse picture of this case, we have ~

tan¥; = — R, tan ¥4’ : (43)

vhere now in equ#tion/ (43),‘ tan ¥, is given by equation (42). Equations (40) and (48) lead

- the conclusion that for both the cases the same relation holds good between the optimum -

ading axfles of the space vehicle at the launch and destination points.

»
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