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Using two-parameter quadratic temperature. profile in conjunction with the heat balance

integral method, approximate solutions for the freezing of a semi-infinite slab and inward

freezing of a circular cylinder are investigated, with the assumption that the freezing takes

place at the surface of the solidifying medium according to Newton’s law of edoling. -Com-
o~ parison with the existing solutions on the former problem shows good agreement,

Transient heat conduction problems accompanied by change of phase occur during
aerodynamic heating of high-speed vehicles, nuclear reactor operations, food processing
and ice formation, etc. Since such types of problems are non-linear because of the un-
specified nature of the moving boundary, their closed analytical solutions present a

considerable difficulty.

A few investigations have earlier been made on the transient temperature distri-
bution in a melting solid when"the meltis immediately removed on formation. Landau!
and Masters? have studied sublimaticn problems for very large heat inputs at the ex-
posed surface and have obtained the solutions of the differential equation by the method
of numerical integration. Recently, Goodman3 has developed a mathematical technique
of heat balance integral and applied it to a number of phase change problems. The
technique transforms the non-linear problem into an ordinary initial value problem whose: .
solution can generally be expressed in closed analytical form.  Ahuja & Kumar® have -
discussed the problem of melting thin eylindrical tubes by the application of this
technique when the molten mass was not removed.

In this paper an attempt has been made to find out the transient temperature-dis-
tribution in a growing solid. The solidification is-effected by considering Newtonian
cooling at the surface. The problem has been studied for two different configurations :
(1) freezing of a semi-infinite plane slab, and (2) inward freezing of a circular cylinder.
The results of study on plane slab were compared with solutions already known® and’
a noticeable agreement was observed. Finally, the results of these investigations were

W

evaluated numerically and depicted graphically. - 7 :
, STATEMENT OF THY PROBLEM |
For the purpose of this study, the liquid has been assumed to satisfy the following
conditions T - » ' \
(?) The whole liquid remains’ at the fusion temperature.
(#) All the thermal properties of the material are uniform and constant.

(i%¢) No change of volume occurs during phase transformation, .e. convection
effects in the liquid have been ignored.

On the basis of these assumptions, the 6nerg‘y: equation for the solidified phase
can be written as ' o - : '
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where A is the configuration parameter—zero for the plane boundary and unity for the
cylinder; X, p and C are thermal conductivity, density and specific heat of the solid
res pectively. :
Boundary conditions

, At the solid-liquid interface, one of the boundary conditions to be satisfied is the

<, equality of the two temperatures. If Ty is the fusion temperature* and s(t) the posi-

“_ tion of the moving front at anyinstant ¢, condition 1 for (i) plane boundary slab with

~ boundary @ = s(t) and () cylinder with boundary % = & *— s(t) where @ is the radius of

" the cylinder, is given by '

; T=Ty : @)

A second boundary condition at the moving interface relates to the liberation of

heat at this surface. This condition for the solidification of the plane medium and for
the inward freezing of the cylinder is given respectively by -

T d '
By =Le g i o=:0 ®
oT ds .
.K-a—w=—Lpd—:;w=a-—s(t) | (4)

The wall condition for the solidification of semi-infinite slab at the boundary & =0
and for the freezing of the cylinder at the boundary & = @ is written respectively as

_K%:HW—R) ®).
an—za:-'-—H(T-Ts) (6)

where T's is the temperature of the surrounding medium and H is the coefficient of the
surface heat transfer. .

Subject to the boundary conditions (2) through (6), it is required to find out the
solution of the problem (1) for the two configurations under study.
SOLUTION OF THE PROBLEM!
Introducing the non-dimensional quantities :

_I'—Ty  (Ty—Ts)H? _H
O—TF-——TS’,— K -t e=gs(t) (7)'
_(r—15)C _H
é= T » 0 =7
equation (1) for the two situations may be expressed as .
0 8% A
8 o = A | o<r<e

o >0 (8)
V 20 _ 0 20
3(1—7) o = or {( 1—7r) 5—;} (B) ‘
*The temperature scals 18 so chosen that solidification ocours at zero temperature.

tHenceforth capital letter A in the parenthesis will refer to the solidification of the plane slab and
capital letter B to the freezing of the cylinder.
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The correspondlng boundary - condltmns in terms of’ the dimenswnle‘ss space vari-
able r are

6=0_; r =

e )
89- - de - .
gt =v (10
e o s
= 1+o =0 (11)

Where r for the freezing of the semi-infinite sla.b and the 1nwa.r(}ﬁ:eezmg of the cylmder &
is given respectively by

»

> R L S o

The method of heat balance integral is now used. Integra.tmg equations (8) Wlth ros-

pect to # between the limits r =0 and r = and using the bounda,ry condmons (10,
and (11), we obtain B :

d - ~,‘_e; 7 N ‘7 N . ~ - %
e' . ae -
(10| fo 5 0 @i
: r=0 o L .
" (13)
de ‘
(l—e)&;—-(1+0) f 1-—7‘)——dr (B)
v r-—-O o ._, i
Aga.m multiplying (SA) by2 —0— .and (8B) by 2 (1—r) gg and integrating with
respect to 7, we get o ’
R € - 9
@\ . (o0 o8, - .
) o [

~. r (14)

e -
0 :
{[/(1——9‘)% jr} —28[(1—— )2 d9' (B)
0 LT
Now comndermg curves of consfant temperature in the rr——plane usmg relatlons
(9, (10) and (11) equations (14) reduce to

A ~

o
+(1+a)2..,.:'_; __zsf . ae @) |
=€ "’—-

> (15)

_—%f (1_r)2a-9 "ied (B). e

o

a0 l
or

- ¥ vaver|

e



284 ‘ AR ‘Dnr SorJ Vor. 18 bomonn 1068

- To evaluate the integrals on the right-hand side of equations (13) and (15), we assume
the following two-parameter quadratw temperature profile for 0 :

1v+ (1_;',;.;)4_9(_}_%_:_'_:;) ; (16).

which olearly satisfies the boundary cond1t10ns (9) and (11). The initial conditions for
g and e are B

6 =

€=0, r=0
"It e¢g=0 - an
€= 0 S '

Here, ¢ and g are two unknown functions of time and are to be determined from
equatlons (13), (15) and (16). - :

( Substltutmg for 8 from (16) in (13), we obtam the follomng relatmns after evaluat-
ing the integral expressions -

14+¢ 38— 289d¢ 3(2+4¢)e de 8(4+e)¢d_g__'l A.~l
- ity 3 3(1+¢) & 6(1+g) dr ~ (4)
' (18)
de  3{(4—e—28—&)g—2(3—e)e} de 3 (B—e—e?)e dg 14y
(I'F ) 6(1l+e)2 dr 12 (1+e¢ dr 1+e (B)
Integratlon of equations (18) with respect to r with the nntla.l condition (17) gives
s .
—-{(1+e>2-—1—210g(1+e)}-—,—‘—2;—3— log (1+g)
1+e3—28  8(2 :
4 f ity ’log (+g) Jae  qom
% & & 2 8e— et — & '
r=8§§—F%——g-—gkgﬂ4%y——i—%——4%(l+g)} 
' $(4—3) Jl+4e
%hs—&—bén%(L+w]}ﬁ -  (19B)

~ Again combining (15) and (16) and solving the integral expressions, we get

| (2y | 1+g)de+ (1_+é)2______285e L (Be—dg—go)e

€« 1+e 1+e U1+e) 6 (1+e)-
' 2¢ — 39— gs (€~9)(‘1+9) o
= 6(1+e)} +2 (1Fe)e
(14g)(3e—4dg—ge)e 2(2 —3g—ge)g) de .
T 6(1Fep T T e(14e)e }£~_ (204)
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(% l+g\de [(14+g\2 3 " |
(1—ep (T - t+e) @ (1+e) = T (14 enr {40‘_20‘2"2°8+3“
| : dg
+(— 30+ B2t 4 — 40— ) g %&% |

5 ‘
— T {-- (6062 — 3063 — 208 -+ 15¢%) + (100c — 802 — 66¢e® |- 22e4--18¢%) g

+ (— 60 + 16e 4 4862 - 1263 — 22¢t — Teb) g? l z—: (20B)
Elimjnating = from (18) and (20) the resulting equations in g and e are

{4e+ez_(6-+4e+cz)g } e(1+¢) g‘g=6e2—|—253—~( 16¢ +- 1664 66) g

: C12(14e€)?
| +(12+20e+14<2+3e8)32———5)‘(—8'*'—‘—)—g (1A
with the condition that ‘
R ' .
e=»0 eg=9

. . o N ., ) .
8{—-—406—}-35€2—€3—6§4+(60-24e.—_—_13€2,+353—}-254)93 e('1+e)v(:£ ==
60 (1+e) (1—e) (€ +2—ge)

98 ( 30€2 — 308 — 10¢t -+ 15¢°)
+ 28 ( 80¢ — 45e2 — 56€® + 17t + 1863 ) g

95 (60 + de — 5362 — 2263 4 1764 4 Te* ) g?  (2By
with the condition that ft-) ) €9 = 0 -

Equations (19) and (21) together determine the temperature-time history of the
solidifying medium. It may be remarked that inspite of the simplification achieved by
the integral method, equations (21) still remain non-linear and their solutions in closed
analytical forms are difficult to-obtain. They have, however, been solved numerically
by the method given by Fox & Goodwin®, for different values of & . For the numerical
work the following initial values have been used -

| ge)=g'(e)=0 ; e=0
where dash denotes differentiation of g with respect to e .

The sets of values of g corresponding to the different values of & for any particular
value of 8 have been used in equations (19) and the values of 7 (¢) have been obtained
for these values of 3. ’ ' T :

RESULTS AND DISCUSSION

Fig. 1 is the plot “of ¢, the dimensionless plane thickness solidified vs for
different values of 8. The results of the present investigation have been compared
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F1g. 1—Thickness of the plane solidified vs time for
radiation boundary condition at the surface.
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Fie. 2—Thickness of the cylinder solidified vs time for the
radiation boundary condition and various values of§.

graphically with those obtained by Goodman3. It is noticed that during the initial stages of
solidification, both methods give almost similar results. It is also observed that for the

case : § == 0 (8 = 0 corresponds to 8 =1

of Goodman®) equation (19A) gives

. oor=et+ i

This expression for r is the same
case 8 =1.

fats that obtained by Goodman? in equation (48) for the

"Tu;.ml
.

N

-

TEMPERATURE DISTRIBUTION §) IN A CYLINDER FOR VARIOUS DEPTHS OF SOLIDIFICATION (£) AND ¥OR § = 05

9
# te= 03 €= 05 e=0-8 e= 09 e==1-0
0:00 —{)- 25136 —0- 38564 :-—0 55226 —0+ 58966 . ~0:60218
0-05 —0+21317 ~{:35414 - 052912 ~—0- 56847 —9- 58177
0-10 —0-:17352 —0- 32108 —0- 50446 =0+ 54591 -0+ 56036
0:15 —0-13236 —0- 28643 -«0-47828 —0-52198 -0+ 53842
0-20 —0:08973 -0 25022 —0:45058 —0-49671 —0-51444
0-25 —0-04562 —0-21244 —0-42138 —0-47007 . —0-48995
0-30 ~0:0 —0-17309 —0- 39065 —0-44208 . 046444
Q35 . —0- 13217 . - 35841 —0-41272 —0-43790
0:40 -0+ 08969 —0-08969 —0-32465 —0-38200 —0-41035
0-45 . ~0:04562" ° —0-28937 T —0-34992 - =0-38177
0-50 00 —0: 25259 —0+31647 —0-35218
0-85 ' —0- 21428 —0:28168 ) 32156
0:-60 —0-17445 —0-24552 —0-28991
- 065 —0-13313 —0:20800 —0-25725
0-70 —0- 09026 —0-16912. —0-22357
075 —0+04589 —0- 12888 —0-18886
0-80 . . 0:-0 . -—0:08728 —0-15313
085 —0-04432 -0-11638
0-90 , 0-0 —0-07861 ,
0-95 —4" 03982
1-00

,‘ V'~ ‘ . i‘ ‘~ . . 0-0
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Fia. 3—Temperature at the surface of the cylinder F1g. 4—Temperature diséributiop in two different
ve time for the radiation boundary condition. solidified regions of the oylinder for radiation

boundary condition at the surface and various
values of §.

Fig. 2 gives the dimensionless thickness of the frozen part of the cylinder vs = for
different values of 3. It has been observed that during the closing periods, the solidification
is rather abrupt. The dimensionless time for complete solidification of the cylinder for two
different values of & (5 = 0-5 and & = 2:0) has been observed tobe 1-18 and 1-235"
respectively. Fig. 3 shows temperature at the surface of the solidifying cylinder wvse for
two different values of §, while Fig. 4 is the temperature distribution in two solidified
regions of the cylinder which correspond to ¢ = 0-3 and 0-5.

_Table 1 gives the temperature distribution in the solidified regions of the cylinder for
various depths of solidification ¢ and for 8 = 0-5. For this value of 8 the temperature
T at the surface of ice cylinder has also be calculated. It has been noticed that under the
given conditions and with theuse of the temperature profile given in equation (16) a
temperature of —30-6°C should be maintained at the surface of the cylinder in order to
freeze it upto half of its thickness, and for the complete solidification to occur the surface
temperature should be —47-8°C.
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