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The Discrete Maximum Pringiple has been applied to solve a few optimization problemscf
multiple staged rockets by including the gravityinto the performance equations. The problem
of finding the minimum massin order to obtain a specified velocity at the end of powered
phase has been splved under various assumptions about the structure factors both when the
stages'are arrangedin seriesas well asinparallel. The problem when the objeoctive function to
be minimised is the cost per pound of the payload has also been investigated.

A number of authors e.g., Goldsmith?!, Schurmann?, Weisbord3, Hall & Zambelli¢;
Ragoac & Patterson® ete., have solved the weight minimisation problem of a staged rocket
by various techniques and under various simplifying assumptions. One of the common-
simplifying assumptions is the neglect of gravity factor which is taken into account by
suitably reducing the mission velocity required. But the loss in velocity due to gravity
is"quite considerable for large boosting rockets and recently Tawakley® has emphasised
the importance of taking the loss in velocity due to gravity directly into the performance
equations. He has solved the problem of finding the total minimum mass required and
its distribution in various stages so as to obtain a required mission velocity at the end of
powered phase, when the material and propellant for the rocket system and the number
of stages are fixed in advance. The Lagrangian maximum principle was used to solve this
problem.

Recently a number of other useful methods have been devised e.g., Pontryagin’s
maximum principle? for solving optimal control problems and this method is particu-
larly useful for continuous processes.  The maximum principle for discrete processes
has been given by Katz® and successfully applied by Fan, ef. al.® in solving optimization
problems of staged rocket. The advantage of discrete maximum principle in multiple
stage processes is that its application gives directly a general recurrence relation in control
variables and the optimum value of the objective function is obtained by solving the

~performance equation of the system together with the recurrence relation. But Fan,
et. al.® in their analysis have neglected the gravity factor. In the present paper the author
has applied the discrete maximum principle for solving the optimization problems of
“multiple stage rocket by taking gravity directly into the performance equation. In
section I, the simplest case when exhaust velocities and structure factors for each stage
are constant but different for each stage is considered. In section ¥I; the problem has
been solved after removing the restriction that structure factor -is constant for each
stage and employing a scaling factor for it le., structure factor 1s considered to be
linearly dependent on stages weight. Section III treats the same problem by introduc-
ing a power law approximation for structure factors. In section IV the problem when
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the stages are arranged in parallel and all the engines are working simultaneously to
provide thrust has been solved. The importance in economising in cost is of great
significance in missile design and tie case when the total cost of the vehicle system
is minimuwm is considered in section V. - -

THE DISCRETE MAXIMUM PRINCIPLE
The discrete maximum principle for solving optimal problems of multiple stage

process can in brief be described as follows: :

Let  denote the k-dimensional state variable and 6 the ¢-dimensional control
- variable, then if the state variable in the nth stage be given by

:p”=T"(m"‘*‘»,0”) n=12 .. .. .,N (1)
the problem is- to choose a sequenee of @» at each step which will maximise or
minimise 27 . _ )

The procedure in short to solve this problem is to introduce a k-dimensional
adjoint vector z» and a Hamiltonian H» satisfying the following equations : ‘

s aT; (xn—l,av)
. 73

o] o
il = zj

=12 .. .. ..
n=12.. .. ..,N @)

n—1
j=1 8%

8

i=1
It can easily be shown that .
o aH» Ny . _OH" ,
= o % = =T 4)
. The: optimization problem becomes that of finding & sequence 8" to satisfy the following
condition . »
N, P —1
Hn = Z % T,- (fb'“ .0”)'=min.ormax. (5)
. “~ ‘
for which
et» 0

dxn
OPTIMIZATION i’ROB‘LEMS OF ST'AGED ROCKETS

The discrete maximum principle is now applied to solve the optimization probléms
* of multistage rockets. The stages are numbered as 1 to ¥ from top to bottom as shown
in Fig. 1. In section I to III the problem of finding the minimum mass in order to obtain
a specified mission velocity has been solved under various assumptions about the structure
factors when the stages are arranged im series; Seetion IV deals with the same problem
when the stages are arranged in parallel. Section V solves the problem when the objective
function to be minimised is the cost per pound of the payload.

i

e

H”=Zz;'f” (wn—-lan) (3)
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are considered to be known.  constants - but. differeat. in -
each sta.gc Here, we talie ‘the stage payload weight Tatio -
X== (W W) as the control variable, The total,
> TN payload weight ratio 2;* of ‘the nth stage and the totalspeed:-

o of the nth stage z,» are taken as the state variables, Therefore:
seconn  ©quations ocerresponding to (1) are - :

FIRST

STAGE

sTAGE , ) » ,
Ty * =‘w#”'*41' a2 (B)
SR . T
oo L.3 Zt = g,p—l—cn [IQgT” - ?n ‘L,;,Tl“] R
’ . where 7" is-the mass-ratio of- th&nth stage rqeket ‘and. f';/g]‘ *
o is the ratio of thrust to total initial weight. i.e;, the xm’ow&
STAGE  thrust acceleration of the nth stage.
But r™ jn terms of A™ can be written as
L : - A
! - T—erl—2am) = ..
Typical multiplesta ge rocket ' , - A
Therefore (7) can be re-written as ' , B K
A gt == ]
mﬁn = w2”-—1 - " [ IOg 1 en(l - A"’) ‘ fn . An (7“)»
Here the following bounda.ry condlflons “hold
m1° ‘=' 1, = =0, (tz = V
Now from (2) the adjoint vectors.in this case are :
Lt TN U G
\\zz -1 = zz (@@) JT ) . \(8i
: Acéording to (3) the Hamiltonian is
Hr =azpn=l Ay Za’_‘.[ﬁ,'%a","‘ ot { F‘Eg-v,m -
o 1) a—e) }] o

fr
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Since A* s the control variable, therefors for optimum conditions 3H"/gA» = 0,
(n=12......,N), which gives 8 : ) '
. ‘ ' 1. gr 1 10
_—— 10) .
’1 —er (1 —2a") fn. én ] ( )

%" = cill**’l z’l"'/\'”/c"' @ ——'e’,')[
Asa consequence of (8), we obtain the following recurrence relation to give ﬁh&:
optimal sequence for A" o

1 A g 1
i— en,(]_ e An) fn An

1 — o) [ ] — o1 (1 — 1) x

1 g 1
. Al_en_..,] (1 _An—-l) fn-—-l Can—1
' n=23....,N (11

Thé procédure to solve this recurrence relation when the values of €%s and f%'s
are supposed to be known can be as follows :° : ’

Step 1—Assume an appropriate value for AY

Step 2—Calculate the values of A", n=1,2... (N — 1) satisfying relation
(11). ‘ . .

Step 3—Calculate the value of ©,° by substituting the initial condition ¥ =0
and the values of A" calculated in step 2 into the equation (Ta). If the
value of z,° so calculated is identical to the required mission velocity V.
then the values of A" calculated above is the optimal sequence. = -

Step 4—If 2,° is not equal to the specified mission velocity then a new value for
‘ AV is taken and the steps from 1 to 3 are repeated.

Section IT . _ R

In the above analysis the structure ratio is taken to be constant. But Colemant®
showed that a better optimization analysis would be to include a scaling law for structuve
factor which may account for its variation with stage size. In this section we take a
linear scaling law for the structure factor: depending upon the stage weight, i.e.,

| e=dvurp B a2

where A" and B" are constants for each stage depending upon the propellants and
thrust levels under consideration. Here we take -w"® as the - control variable and as

before , " the stage total payload ratio and 7" the speed in the nth stage as the state
- variable. Therefore in this case .

.
S
n—1

s :
wa -+ w" ®
0

(13)
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TSt

N ;s»mv ‘ C ' et | - - . . i R . o _ -
ot R T e T : '
N . O - i
_ww=2m - S )
‘ 0 ; '- : - . . " .
Therefore . ‘
wo x,® ! I "o w;ln g
T p— 1 — : .
’ 'w9 mln-—-l -+ wn e® w? m n—1 + wn(Anwn B") (w) ‘
Here the relations correspondinig to (1) are
ot = w 16y
R S w ] - ”’"“’1 | 9
o Ty 4 [ log «w“aof‘—l + wf(A“w“ --B*) fn .
- Oip 1 — 1 Yy LT I ANE '
S g By (00
wox," ’ ' . &
- with the boundary conditions that ‘
< 11 1 xz = V 2y
The adjoint vectors are given by : ;
el g B g B we C e ‘ L9t
%" zl-' % G [ w":cl"“‘ 4w 'w"xf%—l 4+ wh (A"w" -+ B®) + n
o e wlesol b £ BB
25 et = 2," ‘ (17a)
The Hamiltonian - for thls case is- ‘ ’
f g— » —1__ g% ( l wo‘iln
H 21 ( ) + % [acg‘ 4 llog w"wl”"l + w" (A™w™ - B"}}
g (sl e £ B )
f . wom n—1 + wr . .
The eondmons giving the optimum sequence for w" for minimum n¥is -
oH gw® =0, (n =1,2,...... N) i.e. ; )
: 1 Lo odmpr4 B
N g0y B v . .
2} w z? c” [ w"ml“—'l + w* . wawlnv‘—l + w"\(A"jw" + Bn) |
: L9 g" { 24" + B» . w"a;l"-—l 4 wn (Anwn 4 B#)
SR N T T }]
Asa consequence of (17) and (17a) this can be re-written as
ot 1 24w + B* +
' w°a:1"-'1 + wr (A*w* + B”) wozyp—1 T wr(Arw" + Bn) T
24"w* 4 B* 1 '
w(.ixl“—'l + W _wﬂxin——l + we } i
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Bmsu. v,m rs;dmam : TSR L

: ‘\ : ‘ ’v\ ’ ‘ ‘ ‘ \' i o ; N '
/=-‘-‘: c”—'l 1 e 24”.—1 w“.-l + 'B”—’ Lo ""”’“" Wl e
) .w"xl"—“’ + wn ) »wow %w—32 + wﬁ—-‘l (An-—l wn—1 + Bn-—-l) + f"—l‘

S' 2Aﬂ-—-lwn~—°l+B“'-‘l ) wO@g’%—'z_i_w”'—l(Aﬂ—l wﬂ-—1+Bﬁ»*‘l} .
( ' wowlﬂ*-z + W-—-l : (wOwlﬂ -2 _Fwn—-l)2 . } (i

S~

N ow with the help of (12) and (15) this can be aumphﬁed ag U
" (1— rien) Fogny R
1= ( —2 ) ”ffB")(b”‘? fT)'*"“ ‘{1-—7"—1(% B@)}‘

- . -

{I*W fn—-l

(18)
whish is the ruqulred recunenca relatlon ngmg (the. optlmal sequence for the optimal -
weight distribution, - o = . L L
_Section 111 V 7 ._ : . ,
Here we approximate the structure factor by assuming the power law of the form_

N _ g1

€N = aﬂ (wﬂ)

(19).

" where a® and g* are _constants dependmg upon the selectlon of propellant feed system
and auxiliary system: etc. of the stages. In this case -

Oy N h - { A
e = - - w e i - ﬁ“‘ i T (20) K
. w%{“‘“ + an (w™) . BRI ¢

Therefore as hefore” -

| —,
ml —-_
/_:

- 0, ",
,w%

zy® - -’”2""'1 —ch [log - w°‘”1"°'1+a” (w”) }]

Wop=1 4 gn w 5 oAt

Hence the components of the a.dgomt vectora are .. —

N

gp—1 Bon w”' o _w
. w%t,,",l + we w% n—1 +an(ww) o o
'wozln—-‘ +w” (,wax.n-f-{-.w”) a ] | ( )

[ 3 22”-—! . zlﬂ @eon A (21”)
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and the Hinsltoniam is: ; ‘
© ] ) * ) ¢ W ‘”—-l_ - " “ ;l
Hn — (wlﬂ—l __{_.Zo )zln + [a;?i!—l__cn{ log wl +w ﬁn __._.?_”“

woxy" -l oc”(w")

(1 e NES
e —1 n 2
wory* ) + w i

and ‘iv;he condition for the optimum ;;equence of w" from (5) is

L

. 1 ) - WP (,wn)'gw —1 g"
W gp0p nan' - ‘ - P\ i ]
f' = w'ze [ Wz —1 1 w" . . g" + fr
wozy 1 4 (W)
Bn —1 ﬁﬁ?
§ ampr(w"). . woxm—1 4 a*(w®) }
‘ 1 ’w%l"_'*";f:- wr ' (w"wi""l -+ wm)zx "
Making use of the conditions (21) and (21a), the above becomes as

oo -1 | -1
on { 1 i _°"nﬁ"'«("/0”)p’r +gi_ {W’ﬁ” (wm )Bn
: 7& O, 81 %
L A U
o - 1)
_nnl_*Jl
' wCmy vl 4w Jl J
: A | iy ’ ,
= n—2;1* n—1l __“’—""l o (w”“'l )ﬁn 1 + %—Hl : A
v w°zy "2 Lot (wr )ﬁ” -1 T \
. ot 1 T 7 :
an—1 gr—1 (wn—-l )ﬁ"— I womln,-z*_*_mn—l (w"—l),ﬂ ! v
AT ,wowlm—z’*_l_ww—-l T (0" 2+ wn—1 )2 . ‘ ,

Simplifyitig” it-further-in terms of the mass-ratio, the reeurrence- relation to give the
optimum mass-distribution is given by ‘

o (1— f» e ) (1—1v ). 1 g 1 g1
(T—e) - s F):mw—-t‘ 1 ﬁn—-l en—1 ,-n—-l) (—;n:l f_n:-—l
' (22)
B h =23 ... » N
I we neglect gravity terms the above-reduces to _ ‘
PO () s (1ot ot o ) (1- e )

(1—e*) \ gt frT ”
‘ _ on=23 ......N -
which is identical to Coleman’s!® results obtained for the case of three stage rocket.

Section IV = - o S
Now we consider the case-when the reckets are arranged in parallel insbead of

in series as inthe above sections. Here all the rockets are supposed to be working

simultaneously to previde thrust to the whole systems. We assume that the engine weight
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. of any stage is proportional to the mammum thrust of the engmer.° Thus if F» o is the:
total thrust in any stage then the engme welghb is given by ,

‘ . an—1 S R
S We=arwp (oc" ",TT)' . | (23)
where on == F / We  with the condition - t-ha.t «® = 0. Therefore in thls case *
- : 1 ;
(1—e“)[A“a“ (I—A"or."-—l)] +e (24)

Here a.gam we - consider A* as the control variable and the stage total pa.yloa,d
weight ratio @, and the speed at the end of nth s’oage :1;2" as the state variable,

80 that
(I}l” = (Bl"‘"‘l A”

A

1 1A aa—t | |
mf._wn—u+cn[mg{‘”* L - ’+~Anana~1nr+en} |
' (1—e® ) (1—4n gn—! i, o E
B = MDA |
With. the help ot (4) the components of the adjoint veotors are e e
N Zyh—l = zn An | (25)
Z,n 1 = Zy" T . 25@)

Hoe the Hamiltonian is . |
1—¢n = AB gn—1
- Hr = g n—ln g n +x2”_,_lz2 +cnz”[].og {( = )(1;\1& & ) +An “n(l_en )

1—en ) (1—4n gt \ 31
.+a}+ﬂ{;‘ e )—Mwaew%wﬂ‘
Therefore to find the optimum sequence for A* we tust have aH» | 8An =0, i i.e.
' ‘ (]——eﬂ)(l—-A“a”—l) -
e B g n—1
22?" =C" ¥ AP 21” [ (]_—E” ) (1—A"‘ d.”—l) + An iAn P (1—-—6"’ ) + €n }
9t (l—en) (1—dn a”—l) ‘
. f“ S CO J_
As & consequence of the relatlons (25) and (26a), the above can be re—wmtten a8
. 1 - - ‘q’“
on ( 1—e® )( 1___An an—l) An—! A
(1'—‘”)(71“;f“ o) +Anan(l-—-€”)+€” ﬂ =

, = en—1 (]___Qn—l )(1_ An—i OC”—? ),\n

[(1""‘"—1) (1—d4r—1 "‘"f—z )-{—A"“" tx.”"" (l—e”“‘) + en—% f”' -1 ] i

I\n—-l ’ . s o
” =280,
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If we express the above in terms of the mass:ratio ¥» it can be simp]"iﬁeq a8 -

NP

. R Y e B N
== .c""‘—l\[ll— r"—l{ Ar—1 a"fl (1 —ev—1) 4 e }] »[1 — ﬁ—l-f :‘;T—T]
' n=23.......,N (26)

- which gives the general recurrence relatlon for the optlmum d1smbut10n of the total
- weight in the various stages. .

P

Section V

. Chase™ has presented an analysis for optimum staging when the objective
function is the minimum cost-per-pound of payload vehicle under ‘the assump-’
tion of a linearized cost equation for each stage. - This equablon consists of-a fixed cost
plus a variable cost.which is dependent on the propellant loading in each stage, ie., )

Rs® = An + B» Wr, - ' - 27)
Baut Oha,se 8 analysxs is- very cumbersome and does not give any explicit re,latlon-
ships giving the optimum conditions. Here we apply the discrete maximum principle
in order to obtain sach relationships. We take the ¢ontrol variable as the weight of the
stage w» while the state variables are z%; (= total cost of the n stages), z*, the stage
total payload weight ratio and 23 the velocity added by-the n stages. Therefore
z» = w14 An 4 Bn'ye (1-—6“)

g

‘ itz”-"—‘w 1+-——~ ! . : - . '}‘

ST ° g,n ‘ n © 2 n—1 n 1Y y':;
gt — o | log W%t 9" [y waltwere]] R
' ‘ : w vwz’”‘l—{— wr " b A w° xy" RS

in this case the boundary conditions are
7 =1, m,w-l 2° =V, a¥ =

Hence the components of the adjoint vectors are given by

. S SR 8)
. | 1 1 "
n—l = 5 0 __ 5N a%n - L
%3 = % - 2zt et w [wowz”"“l’*“ wn sz’"f—l—]—'wn o 4+ f”

1 . w mz"""'l + wr en
Lw %y n—-l -+ ’tl)"’ (w .152""—1 + ’M)") } ] (28(1) 7
| ~ Bl =t )
. while the Hamiltonian is . o

jﬁ - [a:ltv—l,;i:f A Br (1—etpur }-zl" +~[z2n-—l + %] &+ [@—-{g o

{og W=l e gt (lww"w,"'—l‘_—I- wr e“)}]zs” - (29) i

w°z. n—l—+ W e . fn w°w2n-1 + wn
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Hpre again for: optmum conditions : 9 ' "la wh = -0, ise.,
1 e” ’ n
” —_— ﬁ, n "
. za w zs [w°$3H+ w”A w a;’u-l+wnen fﬂ -
: ie® 971 gnen) o w
{w%gf""“ T @t | B e
Therefore making use of relations (28) and (28a), we have .
ot el Nd e*—1 o
vAe [m ) m} ]+w ot
| 1 ) P gl ,G»;-l
[ w® wzn—.2.+ m—1 — w® . 2&-—2_’.1_.' i1 en—1 + : fn—l { w® wzu—i’/.{..y.ww—‘-l
WP T2 = gy—Len—-1 o o ' . :
- (w°fvzw—2+ wn—-:)z }] T B (A—Mu* =Bl (l—el)u*=0 . - (30)
Now with the help of relation (286), the above can be written asA
v -~ : ; , N—=] (el ___ 1) oy
| Bl —ety —Brq e | [ —1) (g™
[ B —emt) — B e)][w.,,p,,_z_w,,__l -2
1 Cewl_.1 .
2 — =
+ o {w° m:u—!i +4 wn—2 w® xan—-3+ w2 gn—2 .
Y ( o2 _wC S T2 | .
fn—2 w :122"""3-}- w2’ (w x, B—3 + wn—2 )2 '
n _fan ___ I) ”»
Br2.(1 — en—2) —IBn-1(] . nt -1 (9
[ A —e=2)—pi—o) | [ ks
o 1 7 "1
w°® xzn—-2 -+ wr—1 w® zzn—2 + wh—1 en—1 .
gn—l ( e —1 _ woggn—2+ wr—1 gn—1 1 » 1 P
f”—~l 0° z,h—2 - g (%272 Foov1 )3 ) )i 3 )

Making use-of the following relations
w° .@.2n; == % xrzn-—-l -+ "
W (1,___.@1:)'

re 1

$2n =
the above can be simplified as

v[“o(l—-f"c")ﬁ(l ‘9‘“) Xy !(1-—-7*—-1 ew-—l) (1—-),“__1;;‘.:]

[ Br—3(1 — =2 ) —Brl (1 tﬂ*i,‘)] = .%t%
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In the above snalysis we have considered the stmctut_e factors " to be constants for
each stage, but the analysis could have been carried out by taking scaling laws for'it as.
- given by (12) and (19). . :

" “Parlicular cases—(a) In case ¢®, ™ are independent of =, i.e.
}n=1,2,....,N o (33)

¢ =

" = ¢

*_and gravity is completely ignored the\generéfl recurrence relation (32) reduces to

. —1
(=) B —3 . Bn—1) — ™ (_1 — €)
(rm %) (Bw Br—1) e

(T”'f2—~ yn—1 ) ’ (Bn-—-l —_ Bn)

Forthe ease of a three stage rocket the above-gives_x a relation between r%, 72, 3, B, B2, B"
and e of ‘the form ' . -

(B — 1) (B . BY) = %1 —€)

) (1 — %) (B — BY)

1—e7?

(b) If in addition to (33), the following also hold good

Ar = 4 .
B* = B _n=’1,2,....,N “ (34)43»
glfr= 9/fJ |
then from (285) and (30), we obtain . _
. o 1 . . ‘ i g\ .
a—ro(l-—p %).w(x.-w (1= FZTT)‘”"2’ booein

which in the simplified case when gravity is completely ignored reduces to the well-known
. result that 7" should also be independent of » i.e. the mass-ratios for-each .stage must be
identical, as also obtained by Malina & Summerfield*?.

NUMERICAL ILLUSTRATION

In order to illustrate the Discrete Maximum Principle we take'a simple problem of &
‘three stage rocket and consider only the case discussed in section I. The data for the
rocket given below does not specify any, particular mission. :

¢, = 16000 ft/sec. =25 gHft =5 Ve = 26500 ft/sec,
¢ == 12000 ft/sec. € = .20 glfr=-4  Wy°= 1000 1lbs.
cg = 8000 ft/sec. e =.15. Pl =3

With the-help of equation (7a) and the reourrence relation (11) we obtain the required
minimum gross initial weight and the approximate weight and velocity break-up due to

e



the three stages, For the sake of comparison both the sots of values when the initial thrust .
acceleration of each stage is included and when'it is neglected from the performance

equations, are given in Table 1.

Taste 1
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P WEIGHT. AND VELOCLTY DISTRIBUTION FOR A THREE STAGE ROCKET.

-

Tnitial vhrust Initial thrust

Quantity " Definition aoceleration acceleration
_ included neglected
Wt . Initial weight of the first stage 6017 1b. 4500 1b,"
Wt © Initialweight of the second stage 33526 1b. 15750 1b.
W Initial weight of the third stage (Initial groes Lo L
' weight required) ' 120694 1b. © 22318 b,
x? .. Velooity imparted to the payload 46500 ft/sec. 26500 ft/sec. .
AN . Velooity imparted to the first stage 15732 . ft/sec.’ 12464 f\t/'s"“"ﬂ ‘
A \ Velocity imparted to the second stage 6137 - ft/secs : 2300 ft/sec.
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