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The prob]em of interception of a rocket vehicle by optimal path at a preassigned point on
the destination orbit by a commuter rocket vehicle launched from the peri-centre of - the launch
orbit is solved by evaluating launch angle and orbital parameters of the transfer trajectory.
The analysis is general in so far as it can be applied to any system of non-coaxial coplanar-elliptic
orbits under all gravitational fields. The equations have been reduced for axially aligned
launch and destination orbits; various particular cases of coaxial orbits are a,na.lysed Intercep-
tion through Hobmann transfer trajectories have also been considered. The theory is illustrated
by taking & practical case of Earth Mars transfer. )

NOMENCLATURE

h = twice the aerial velocity.
E = eceentricity.
6 = vectorial angle.
¢ = radius vector.
K == gravitational constant X gravitating mass.

« = angle made at the force centre between the lines joining the perwentres of the -
launch and destination orbits ‘to the force centre (focus).

" B = angle of inclination of the major axis of the transfer orbit,
¢ = time.

tr° = time of launch of the mterceptor vehicle.
a = seini major axis,

t/7 = time of interception of the mterceptor vehicle.
V = velocity.

9f, = interception angle, i.e., the a,ngle between the radii vector passing through the
pericentre (launch pomt\ of the launch orbit and the preassigned interception
point on the destination orbit. :

tf4 = time when vectorial angle of the destination vehicle is 6/ -

'§°; = launch angle i.e., vectorial angle of the destmatlon vehicle at launching time of
the interceptor rocket.

t°4 = time when vectorial angle of the destination vehicle is 8 °;
Subscripts |

! = corresponds to launch orbit.
T ==corresponds to transfer orbit. .-
d = corresponds to destination orbit.
H = relates to Hohmann transfer trajectory.
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Superscripts .
* f == denotes values at the time of interception.
0 = denotes values at the launch time of interceptor vehicle.
p = denotes values at the pericentre of the launch orbit.
~ (—) = relates to optimum transfer trajectory of the first kind.
(=) = relates to optimum transfer trajectory of the second. kind.
¢ = relates to circular orbital velocity.

The optimum transfer paths between coplanar circular orbits have been found by
Hohmann to consist of the family of cotangential ellipses. In ref. (1) solutions or approxi-
mate solutions are found to the equations determining the mode of transfer of a rocket
between two coplanar orbits, with minimum fuel expenditure, for different cases. In
practice, however, conditions may necessitate inter-vehicle transfer without applying
corrective thrust during free-coasting phase of the interceptor rocket vehicle rather than
inter-orbital transfer. To achieve this purpose of interception of an orbiting destination
rocket at a required space-point on the destination orbit, the knovs(ledge,of the precise
timing of the launch rocket is essential. Paiewonsky® treats the problem of inter-vehicle
transfer for a very restricted case of coplanar concentric circular orbits taking only
Hohmann transfer trajectories. s

In the present paper a general theory is developed for inter-vehicle transfer between
non-coaxial coplanar elliptic orbits. The problem is to intercept a rocket vehicle through
optimal paths at a preassigned location on the destination orbit. This is achieved by
evaluating the launch angle, that is, the angle attained by the destination rocket vehicle
when the launch rocket should be fired at the peri-centre of the launch orbit so as to in-
tercept the former at the preassigned destination point. The optimum transfer trajectories

. ate classified into two groups : (5) “Optimum transfer trajectories of the first kind”—
these Tequire minimum fuel expenditure at the launch point and (#8) “Optimum transfer
trajectories of the second kind”—these consume minimurm fuel at the interception point
to attain requisite velocity for rendezvous with the destination rocket. Elements of the
transfer trajectories of both the kinds have been determined. Investigation is done for

cases when launch and destination orbits are coaxial elliptic or concentric circles. In-
terception manoeuvres through Hohmann transfer trajectories between axially aligned
coplanar orbits is also analysed from which result given by Paiewonsky? is derived as a
particular case. Lastly a numerical example for optimum transfer trajectory of
the second kind taking Earth’s and Mars’ orbit as launch and destination orbit respective-
ly is solved to illustrate the theory. All applications of rocket thrust are taken to be im-
pulsive in nature. It is shown that gradient variation of the launch angle and the orbital
parameters (except G ) of the transfer trajectory is smaller for low and high values of
the interception angle as compared to that of the intermediate values of the interception
angle. Also the rate of increment of the launch angle and orbital parameters (except )
of the transfer trajectory is comparatively higher in the beginning which gradually
decreases as interception angle increases. It is further shown that the rotational rate of
the major axis of the transfer trajectory with respect to the interception angle is
almost uniform, o

NON-COAXIAL COPLANAR ELLIPTIC ORBITS

Let « be the angle made at the force centre between peri-lines (perigee and perihelion
lines in the case of Harth and Sun respectively) of the launch and destination orbits.
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Equatlons of the launch, transfer and destination orbits can be wntten a8

h“’zu—K[l»{—E;cosB] : - (1y
Wpu=K[1+4 Bpeos{6—8)] . (2)
7a2du—K[1+Eac<JS( —a)] : 3)

1
where u = -~ and 8 is the angle of mclmatlon of the major axis of the transfer orbit

measured Wlth respect to the reference line, i.e., the line joining the pencentre of launch

ox%ind the force centre.

T 0 be the vectorial angle of the space vehicle at the time ¢, by prmmple of conser-

vation of momentum ‘

, u?h 8 = &6 N @
Now, if the space-pomt at which the destination vehicle is to be lntercepted by the in-
terceptor vehicle at the time ¢/, be given by wfg, 8/ ; using (3) and (4) and integrating

we have : . ‘

e
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. B \ sin (§V; — o) ' sin (6% — «)
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' (1> E;)

For the -interceptor vehicle a procedure sumla,r as above yields

(or)

e e {Gii)m (afT )f“ o {G;g:)}ta“ (g)}

¥ i — B ' o
—Eyp (1”71’72’1“) { o (0 — P A+ cin p 1] ()
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A

By cos (0lp —f) it Ercosf  §

For interception the following boundary conditions are to be satisfied,
1% = ktoT (@) . ‘ )
ty =ty (22)

) 9 i)
0fy = 0fp  (44%) ( ,)

and ’ ol =ulp (i)
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And hence from 8) and 8i) -

‘ ’ Ath , toT‘ = Atfd , % - ‘ 9 |
Equation (9) gives the value of ¢°; for any given 67; if the elements (hr, Ep and B) of

 the transfer trajectory are known. The problem now is to evaluate the elements of the
optimum. transfer trajectory.

" ELEMENTS FOR OPTIMUM TRANSFER TRAJECTORY

Let the fdllowing parameters be defined as

4 m%‘;’- = ratio of the peri-distance of the launch orbit to the distance of the pre-

- assigned interception Apoint on the destination - orbit measured from the
foroe centre (focus). '

w = launch departure angle, i.e., the angle between the tangents drawn to the )
' ~launch and transfer trajectories at pericentre of the launch orbit.

Now if ¥; ie the lauuch velocity required to reach the destination point (uy , 643),

we have3 ) 4
? f f
K u (l—cosod) cos/'w—{—&)
1 4 \. d

v V2, cos? w €08 w (10)
. ] .
YISy
Equation (10} can be written as -
» J :
. K u (1——coso,d>se02w
2 __ ¢
Vi = (11

' (7+sin9:tanw-—cosaf)
d

~

Let V2 be the orbital velocity at pericentre of the launch orbit, Then the square of the
velocity change required for the interceptor rocket to proceed along the transfer trajectory
will be B ‘

2 2 s \2 ' '
(AV) =7 +(_V ) —2 ¥, V® cos w )

For optimum transfer trajectory of-the first kind, velocity change should be minimum.’
Hence (12) yields . ' :

2
d(AV) av;. P |
— =2dw[Vz——V cosw]A+r_21>’zvVPSinw=0' (13

Puttmg

’ | , i
KuP(l——cosw:):—-A and(?’—--cosa )»= B,
LA i/ :
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using (11) and (13\ s;mphfymg and rearranging the terms, wchave _ ‘
(ta.nw“—}-O (tanw)"—}-Cz(tanw)z—{—G tanw+ C, _(14)
where : , o o
C, = ie‘,l,rsin2 l)!f,;,i | = ]
¢, = 4 A B sin 6/, o
B C,=24[ 28 — sin? 0] L (144)

Oy = —-sin efd[ALAB—}—smzofd( VPF]
0, = sin? Gfd“[A — B (VP)]

‘The quartic equation (14) after numerical solution will give the optimum d depdrture

angle w, which when substituted in (11) yields the optimum launch speed Vi Utiliz-

ing the fact that the transfer trajectory has to pass through la.unch and destination points; o
(2) gives

B ur, = K [ 1 + Ej cos B ] sy
- 1 ‘ — = ' /
2 u = K[1+ET005(0-—-5;)] "(16)
d
where (-—) denotes values correspondmg to optimum tmnsfer trajectory of the first kmd‘

Also from dynaxmca.l considerations, for elliptic transfer trajectories, ¥, can be expressed
a8

_ ‘ . K(1_5,T) A
V=K | 2v — —— 0 )
[ ) :
or

72 - | (18)

 Substituting k% from (18) into (15), we have -

- _1\Y21”K“:’(1+AE2T . .
B == cos U v ; S

. ( 2K 'up_ — sz) E, ‘J'b . N (19)
S . l g - . ) A .
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Equations (16), (18) and (19) yield

(1_52.) - ‘ .
| s — f

co8 -

.‘ (2 Kuplh—;’,) Egy

( Ferelien)y
/

Using (3), equation (20) is transformed to

Kz(]—g‘zqv)[l,+E¢cos(f?f ~—oc)]
g ) d R

k2d( 2 K'llpl'—‘ _I;zl )’

( R R O

' - . i —l Vzl ““Ku (1+E21') I
— l ‘

1+ E, cosj, 0¢ cos mm— @y

Equation (21) gives Eyp for a preassigned destination point. Substitution of Epin (18
and (19) will yield the remaining elements of the transfer orbit. Having known Eyp , kp
and B » and substituting these for Er, hr and B respectively in (9) will give the

required 0; for preassigned 05 because ;T can also be expréssed in terms of E’T and
—k-qv\by the relationship - ; /
| P K( 1 — E_ZT) = Iy (22)
It is evident from (9), (18), (19), (21) and (22) that the launch ailgle is depéndenb upoﬁ six
” pafé,meters, namely, E; , kd , 0, uzp , 0,{ and 1_7; . Becausc of ellipticity of
the transfer orbit, ’;;; is conditioned by the relationship obtained from (18) as
?21 < 2 K up?

We shall now analjse_the case to find out the launch angle for rendezvous of the

interceptor rocket with a space vehicle at a given injection point on the destination orbit

by optimum transfer trajectory of the second kind. ‘For this case equation (9) giving the
launch angle will remain unchanged but the equations determining the elements of the
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transfer tra]ectorywﬂl be modlﬁed If V,; be the optlmum ﬂestmatlon a,pproach velocxty
of the interceptor rocket

- e K(l—Ezf) ‘
V2; = K QU —_——

d

hp
or . | : o \’ o \/
k(1) |
Bp= ——D (23)
5 ufy - ok
L e

For optimum transfer trajectory of the second kind (15) and (16) will be transformed into

Wopu = K[ 1 + Ep cos B ] o o (24)
. . _
; j - f - P
Poii = K[ 14 Breos (6 -5 ) ] )
From (23) and (24) - A ' '
e (= I ? o= .
- . 'V24—2Kud+Ku; (I—Ezm)
B = — f =\ = (26).
i (2Kud——V2d)ET - =~

Substituting from (23) and ‘(26) m ‘(25) é.nd reérra,nging the terms, we get

. N = f { . r
K(I—EZT)ud i m ! )
—7 - =: (14 Ep cosz b2 — cos™
2K us — V4 L o

V2R uly+ Kuy (I_EBT)‘ L

Bl W
( 2K uy — V.ad)ET,

where u/;, by (3),.in (27) stands for
' A /
ug '=K[1+Edcos(0,z——a)]/kd ’ (28)

Having determined .;Z'.T from (27), ;T/ and; can be known ftofn (23) and (26)

PrEa

reépectivély, Substitution of the values of Er, he a;}q} in placeof Er, hy snd B
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respectively in (9), launch angle for a given. inﬁer@ption angle can be determined by utiliz-
ing the equatien : . ,
aTK(l—EZT)=772T 9
Kndwing the transfer orbit any required guantity like departure véiocity, departure angle

at the launch point ete. can be evaluated. The above analysis shows that in this case also
the number of parameters determining launch angle are six viz., Bz , kg , « , uf; , 6, and

Vi . The restriction imposed upon ¥y due togll'iptic nature of the transfer orbit can be
obtained from (23) ar o ‘

= !
V% < 2K u;-

?74 can be evaluated by the same procedure and corresponding set of 'équatiohs as
explained earlier for finding out V; , if the following alterations and definitions are

adopted in equations (11) and (12):
1

-

> for ¥
I o
om—0; for 0 | )
f . o ' ' S
Ug for ‘
Va for V3
cos { w—w® ) for cos w in (12) |
and V¢ inplace of V7 '

where Vi and V® respectively are the destination approach vélocity of the interceptor
rocket and the orbital veloeity -of the space vehicle moving along the destination orbit at
the injection point, w* the angle between ¥* and local horizontal and ( w — «® ) is the
destination approach angle defined as the angle between the tangents drawn to the

transfer and destination orbits at the imjection point.
~ COAXIAL ELLIPTIC ORBITS , :
If coaxial elliptic orbits are taken, (1) and (2) remain unaltered while (3) takes the form

3 .

k‘;u:K[l—l—Edcoéo] (31)
Eqﬁation (9) still helds good for evaluation of launch angle with the difference that while

f o J o
Atr , ir suffers no alteration, A #; , #; is now expressed as
3

< f ’
RN YN TRET AU P (55 1
) A g = '\/K [2 tan {(m;~) tan 9 }—217411 md

ta,
g, v 2 \} sin 8 o 2 \4
tan-gd—}——Ed(l——Ed ) -—-——Mf +Ed(1—lEd4)
‘ 1+Ed COSGJ. '
sn 9°d - ’ S
I+ E; cos o°d] ~ - 32
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3 ' “.
The equations to find out elements of the optimum transfer trajeo‘bones of both the
kinds can be deduced from those of non-ceaxial case by putting in the latter « = 0.
Three particular cases of coaxial orbits are: ‘ ‘

(6) Circular launch orbit and elliptic destination orbit,
. (i) Elliptic launch orbit and cﬁcular‘d’e_stination “orbit.
" (é) Circular launch and destination orbits.

"For (1) the equation determining launch angle will be the same as that for coaxial
elliptic orbits. Elements of the optimum transfer trajectory of the first kind are given by -
(18), (19) and (21) by substituting « = 0 and replacing #;? by u; — the reciprocal

“of launch circular orbit radius. It should be observed that to evaluate 7, in equations

(11) to (14A), ¥ now stands for wfy [u; ; and ¥? will have to be substituted
by V,° , the circular orbital velocity correspending to the launch orbit. FProceeding in a
similar fashion, launch angle and elements for optimum transfer trajectory of the second
kind can also be evaluated. : '

However, in ca.se'(éi) the equation for evaluation of 6% shall undergo modification.
Equations (7), (9) and (32) can-be combined to yield §° thus : '

3, SR
0° = 0/ — [ vE (u) Ay, tT:l (33)
where ' ' |
ug = reciprocal of destination circular orbit radius. EQuations (18), (19) and (21)
will determine the elements of the optimum transfer trajectory of the first kind after putting

in (21) and in the equations .determining Vl V’iz.; (11) to (14A); ¥ will be inter

preted as : ‘ :
ufy

For optimum transfer trajectory of the second kind, in equations (30), Ve signifies in

“this case V¢4 the circular orbital velocity corresponding to the destination orbit and

obviously w* = 0 in case (ii).

_ If the launch and destination orbits are taken cir(.:ula.r; on substitution of (7) in (33) and
simplification, -6°% can be expressed as :

. 3 [ (1— g —
R 0% = 0l — (ar ug )? [2 tan™! JL (i_*_ﬁ:)%tan (_f’ié_ﬁ) }

1 [ (1—Ep\i B
‘-{-—21'/9:11 i(m) tan—z—} |

1 {0l —B) sin £ @
""rE,T(l—EzT) {1+Emcos0fa + 14 Ercosp | ] &4
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since by virtue of equation 8) R RN
e =0l TR
‘The optimum transfer trajectoiy of the first kjnd‘isi:hara.cterized by the equations: | -

. / — Y o _ i
Ku (I—WT)=(2KMI - V2 ) [1+ETCOS{04

- V%——"Kuz(1+ﬁ2m)‘)}] "

o (( 2K — 7% ) Bp . - (39)

(Since Wy = %) o
| = _szr—K"}(l‘-f-”E“T)‘ ] .

) — e , . 3

P o e 9
p = _K(1— ) R | |

2 Uy — ¥e L - 637

l , K

where in (11) to (14A); w?, ¥ and V2 will -be substituted by u;, (%j—d-) and V¢ res-
' ’ l . )
pectively for evaluation of P, ' - ,
From equations (23), (26) and (27), elements for optimﬁm transfer trajectory of the
second kind are obtained as v - Lo 5

= _ K(1—Fx) \, BN :
hop = ——p— : (38)
2ud —_ 'I*(" : C S

% — cos—! [7’% — 9Kug + Ky (1—T%p) “(3 9') .
(2Kuq — V27 ) Ep ' o

and

Kug ( 1"".?21' )»= (2Kug — ‘72;1) [ 1+§T_cos { &, .
A

o\ (2Ku; — ﬁ:?d ) Be » .
s . 1))

-

While substituting (30) for determination of V,, it should be  observed that 1/7., wf,
and V* now signify (u; [ ua ), uz and V5 respectively and w* = 0 in this case also.
The above analysis will also hold geod-when the -intercsption manceuvres are to be
conducted from outer launch orbits to inner destination orbits since no energy lovel

consideration of the orbits has been used in the analysis,
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HOHMANN TRANSFER TRAJECTORIES
For coaxial elliptic launch and destination orbits, putting
o= gf=0
aud : ‘
;="
in (9) and using [8(s40)] we have

3 sr [ [1—Ei\1. ¢,
"(aq',H)g——‘(ad )2["—2Mn*1i(ﬂ_ﬁ)7tan—%} -

R N L e | I
Substituting « = B =0 in (2), we have for Hohmann transfer trajectory -
T Wor,p uty =K (14 Er,u) o (42
and - .
Wrm

‘ m =K(1—Ern) T (43)

equations (42) and (43) yield
| : [2Kaa (1+ Eq )]
[vi1as(1+E3)+ 1]

Bpg — [upp g (1+Eg)—1]

} ’ Lum ag (1+ Eg ) +1]
- Utilizing equations (44) and (45) o o
' [ur ag (1+Ez) 4 1] ‘ ‘ ‘(46)

ar,g = 2P,
Substitution of equation (46) in (41) transforms the latter thus

3 s 1—Ez \¥,_ 6°
"[ut” ad(1+Ed)+1]2=(2@4;”aa )2[7'——21:&11*-1 {(l——"}:—ET:-) tan —%}

’ 3/ sin 6°¢ ‘
vu(-m) (Greme)] @
.(47) gives the launch angle for Hohmann transfer trajectory. Elements of the tra.nsfer
trajectory are determined from (44) and (45). Incase of Hohmann transfers for coaxial
elliptic launch and destination orbits, (47) proves the dependence of launch angle of two
factors : () ratio of the semi-major axis of the destination orbit to peri-distance of the
launch orbit (i) eccentricity of the destination orbit. Substituting

PPy = (44)

(45)

“EJ =0
and ‘
' u?lad=g—l—
: T Y

in (47) we obtain the result derived by Paiewonsky? for coplanar concentric -circular
launch and_destination orbits : ‘ - '

o T o w U\
SR e d L o
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‘ Fig. 2—Relation between interception. a.ngis and

Fig. 1—Relation betwebeny‘intereeption angle and
) inclination angle of the major axis .

eccentricity

EARTH MARS TRANSFER .

-The theory is illustrated by evaluating the launch angles and the orbital parameters of
the corresponding transfer trajectories for Earth Mars transfer for the case of optimum
transfer trajectory of the second kind. Barth and Mars orbits are taken as circular and cop-
lanar and their orbital radii as (1-49<10%) km. and (2-283¢108) km. respectively. The
Martian circular orbital velocity is taken to be equal to 2410 km/sec. Characteristics for -
«gptimum trajectory of the first kind can be similarly caleulated. ‘

TaBLE 1

CHARACTERISTIOS FOR EARTH MARS TRANSFER THROUGH OPTIMUM TRANSFER TRAJECTORY OF THE
) SECOND "KIND
Iniem‘eption ‘Eccentricity  Inclination ‘Semi-major Aerial Launch
angle angle of the axis times velocity angle
major dxis : 10—3 times 108
nf o= e = . _8 = 8 L e
9 (Z,) @) (ep207)  (#h,107) (63)
km. 8q. km/sec,’
180° 0-207 360° 0 1-879 24-487 45° 20/
150° - 0:220 330° 22° 1-865 24-329 34° 57
1200 0-260 300° 48’ 1-812 ' 23-736 27° ¢
g 90° 0-319 278° 27 ) 1-737 ° ~ ; 22-808 20° 16*
60° 0-462 , 248° 37 1-576 20-334 12° 19/
+80° 0732 - 218° 36’ 1-365 13408 0° 58
15° 0-912 - 199 1-220 8-275 —{1°° 49"

5° 0990 I85° 56’ 1:149 2761 —(16° 319
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Fig, 1-b represent variation of orbital parameters of the transfer trajectory and

launch angle with respect to the interception angle which varies from 0 to 7. Thejr

study reveals following interesting results :

(§) Launch angle and orbital parameters (except 8) of the fra.nafer trajectory -
vary in such a manner that the rate of gradient change is considerably small .

for lower and higher values of the interception angles. For intermediate
values of the interception angle gradient variation rate is comparatively higher
(Fig. 1,3,4,5). '

~ (#) Launch angle and the orbital parameters (except B vary fastly in the be-
ginning but the variation gradually slows down with mcreasing values of
interception angle.

(#4s) Major axis of the transfer trajectory rotates with almost constant: rate as
interception angle varies from 0 to 7 (Fig. 2).

2 o . W % » w e

G5~ wusn

Fig. 5—Variation of Isunch angle with interception angle

PrE
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