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The method of the heat balance integral is used to investigate the solution of a problem
involving the inward freezing of a liquid sphere. The solidification is effécted under the assump-
tion of constant heat flux from the surface. Solutions are presented by considering a two-
parameter temperature profile and the position of the front is expressed in the form of a series
in time parameter. Finally the results are graphically exhibited. ~

NOMENCLATURE

T = temperature distribution in the solid
t = time o "
K = thermal conductivity of the solidified phase
p = density of the solid ' :
a = radius of the sphere
L = latent heat of fusion
@ = prescribed flux
k = thermal diffusivity
= dimensionless temperature in the solid
7 = dimensionless space variable
+ = dimensionless time
S(r) = position of the solidified front
{r) = dimensionless position of the moving front
B = dimensionless parameter

Unlike simple heat conduction problems, the problems involving phase change are
very complicated as they involve a moving boundary whose location is not known a
priori, Heat is liberated at this boundary and it is required to determine its growth with
time. The first systematic study was made by Neumann! who presented the solution
for a semi-infinite region initially at a constant temperature, greater than the melting
temperature, with surface, maintained at zero temperature subsequently. ' ‘

A number of papers have afterwards appeared on these problems?—*. But all these .
papers pertain to problems investigated either in planer regions or in cylindrical
geometry. .

In this paper, we discuss a problem concerning the solidification of a liquid sphere.
Goodman’s technique of the heat balance integral is used to obtain the solution of the
problem. The liquid is initially maintained at the fusion temperature and the solidi-
fication is effected by maintaining a constant heat flux at the surfama\A second order
polynomial temperature is used for the temperature distribution in the solid and tte
location of the front, for small values of time, is expressed in the form of a series in
ascending powers of time. v ‘
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STATEMENT OF THE PROBLEM

- Under the assumption of the constant +thermal properties-of the solid, the equatmm

governing the radial heat flow in the solidified region together with the nitial and surface

conditions are given as - -
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wnsideﬁng ourves of constant teniperature' in the plane and cénibiiiing’équation (2) and

(3) together, the following condition is obtained
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SOLUTION OF THE PROBLEM
Intrdducting 'thex foltowing dimensionless variables
a—z a@t kt.
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the basic equation (1) and boundary conditions (2) (3), (4) and (6) become :
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Integrating both sides of () with respect to  from r = 0 to'r = cand using the boundary
conditions (10) and (11), the hed't balance integral can be written a8 ‘
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| Siniihuly by multiplying both sides of equation (8) by (1—r)? %% dr and integrating
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 the _résulting equation with the help of the condition (12),-one gets
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Tn order to evaluate the integral expression on the right hand sides. of (13) and (14),
we assume the following quadratic temperature profile for B
: - N - ‘
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The two unknown parameters e (r) and g (7) can be obtained on solving the pair of first-

order equations and on substitution of (15) into the integral equation (13) and (14). The
initial conditions are o o
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~~_The latter condition is derived from consideration of the total thermal energy of the "
. solidified phage. This is related to the energy thickness '
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condition (16) obviously follows from (7). becauSeﬂ* = 0 when ¢=0 . ~
Putting the value of @ from (15) m (13) and integrating, we get
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Equation (18) on integration and simplification gives
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Similarly putﬁing the value of @ from (16) in (14) and on integrating, we get
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Eliminating T from the pair of first order differential equations (19) and (20), we get
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Since g and ¢ are connected by the first order differential eQuation (
panded as a series in ¢ and the first few terms of g are thus given as :

i

Equation (21) being non-linear, it is difficult to give its solution in closed analytic form, -
This equation can however be solved numerically by the method given by Fox & Goodwins *
Substitution of the value of gin (19) will then give the time history of the moving front,

21), g can be ex-
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Substituting the value of g from (22) in (19), we get
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Xpresses 7 as a function of the position of the moving front e. It will be
0 express ¢ as a function of the time. r . To achieve this we invert equation
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(23) and the inverted geriés of is given by 'f NS
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DISCUSSION OF THE RESULTS - Y

Tig. 1 is the plot of the dimensionless thickness e vs 7 for two different values of g.
It has been observed that the total time r required for the complete solidification of the
sphere for 8= 1 and g = 2 has been found to be 1-131 and 2- 349 respectively. This seems to
be physically justified because larger values of 8 amounts to lesser withdrawal of heat at
the surface and therefore more time, is needed for solidification. Fig. 2 gives the tempera-
ture distribution in the solidified portion when the solidification depths are ¢ = 05 and
e = 0-8 for B==1. It has been noticed that as the solidification process continues the
surface temperature has to be lowered more and more to maintain a constant flux.
Considering the case 8 = 1, one observes that the surface temperature has to be as low
as —1-17 when half of the solid has frozen and as low as —1-29 when four-fifth of the

sphere depth has frozen.
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< Fig.2—Temperature distribution in the solid region

Fig. 1—Thickness of solidified region vs time. for @ = 1 and various values of .



onnownnnanunms Ry e
The authom are very m tefalto Dr. R. R, Aggarwal Assistant Direotor, Applied

&%emmes Division; for d diseussions and helpful suggesion. Thanks are also due
Director, Defence Smence Labox‘atory, for permission to publish this pa,pex;, S

. REFERENCES S
1. Ittleﬁgson# MO‘ Tyl uasor, “Heat. Gonduohon, 1st Ed” (McGraw Hill Book Company Ine‘ hndbn),'
s P.

2. Poor, &., Int. J. Heat Mass Tronsfer, l (1962), 525,

3. Amoas, K. L., Bolidification of liquids for presctibed heat flux from the surface (Thesxs on some Non- lmear
Problem in Hoat Transfer, Delhi University).

- 4. 'Gooomax, T. R., ASME Tmm . 80:(1958), 835, .~ o
5, Fox. L & Goonwm, ‘E. T., Proc. Camb. Phil. Soc., 45 (1949), 373.

Fn



