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In this paper, we have integrated the dynamical equations of the mean-twisted trajectory of
a spinning shell in terms of step functions similar to those of Siacci. The air-1esistance is assumed
to be a known tabulated function of Mach number. Using our solutions we have calcuiated
the drift of a 3 inch 16 1b. shell which agrees well with the observation. The corrections arising
in the various elements of the trajectory are also calculated.

Our earlier solutions? to the differential equations of the mean-twisted trajectory}
of a spinning shell is restricted to the case of Newtonian resistance and hence has limited
applicdtion only to projectiles fired with subsonic muzzle velocities. Effectively this
is a generalization of Otto-Lardilon’s solution to trajectories in space. In the present
paper, however, we undertake to integrate the dynamical equations of the mean-twisted
trajectory where the resistance due to air is a known tabulated function of Mach number,

“The solutions we thus obtain are in terms of step functions similar to those of Siacci®
but these functions naturally involve the effects of spin which are reflected through,
factors of cross-wind force and the upse ting moment. Give the ballistic coefficient of
a certain projectile and tabulated values of lift and moment coefficients in terms of Mach
number, the present solution will enable us to determine the various trajectory elements
including the drift of the projectile. Here use is ‘made of the fact that the ratio of the
lift and moment coefficients i.e, 1, [fy is & constant** (MAYEVSKI factor). Method
of calculation of these corrections to various elements 1s also indicated by considering
a 3 inch 16 Ib. shell fired at a quadrant elevation of 30°

FOWLER’S DYNAMICAL EQUATIONS TO THE MEAN TWISTE) TRAJECTORY

We shall assume at the outset that the projectile is stable and the deceleration of
its spin due to air friction is negligible, and the projectile is impressed by the air forces,
the drag and the lift given by -

R = pv*?f (afv, 8) ()
L=pu?sindfL (v/a,8) = psind | @

and the moment of the air forces is given by
M = pv*r3 sin 8 fu (v/a, 8) : 3)

The notations are the same as in Fowler's® and the same notationg have been used
throughout, the paper unlcss otherwiss stated.

*A part of this paper was presented at the Tenth Congress of the Theoretical and Applied Mechanics held
at IIT, Madras, 1965,

+Now at the Institute of Armament Technology, Poona. . )
1Tt is the trajectory in space of a spinning projectile after the initial vibrations of the projectile have
damped out. )

*%T4 is true for the case when the velocity of shell does not fall below 1200 £.p.s.
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After the initial vibrations of the shell damp out, the subsequent motion of the pro-

- jectile is governed by the differential equations*

e 'fm.‘=-—-—n(w—|—‘I”sm9)-——l€' 1
_ 4)
n = m(w +’I”sm0)_l'l"cosa A _ j
and SR
. 3.
V= — —gsind
¢ L - o
/v -
‘I’cosﬂ-'-lm'- : - J

‘Equations (4) give thé angular motion of the shell and (5) the rectilinear ‘motion.
The direction-cosines of the axis of the shell are glven by :

1= cos 8 ’ IR | ‘. 'll
m =_sz'n 8 cés& LT _ ‘ (6)
"n-—sinSSincﬁ »
where 8 - is the yaw and ¢ the angle of rotation of the plane of yaw from the vertical

plane conta.mmg the. velocity-vector of the centre of mass of the shell. -The coordinates
of the-centre of mass of the shell relative to a rectangular right- handed Gartesmn frame

" of reference O- ~XyZ stationed at. the gun position are

o Lol R R

':/_v v cos # cos 'P dt v -

o

¢

Y

v'y= "vs'inﬂdt" (7)“

[/]

2 = v‘msﬂsin"f’dt

‘o

- Thus at any-time ¢, ¢ measures the range Y ‘the height and 2 the nght ha,nded dnft
of the pro;eetﬂe The parameters % and occumng in eqnatmns (4) and (5) are glven
by

Chmmmte= L Y Aees) "<8$ ,’

- ‘Here onward’s 8 pnme standa for &Eereatmtmn thh reqpoot to time, 1 bxd (2) pp. 295.387,
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F:
KR
w=p, =L fulmd ®)
and therefore | ‘
b =4y 1 fn 4~
,k/w =i (10)

"~ Here p, is the density’l of the air at the ground, f is the altitude factor for th
height, so that p = p_ f

We further define
. ]G » _ AN 1 . ﬁ— 7 - (11)

‘T—w @ wv " a fa
which is effectively a constant for projectiles fired from large coastal guns where the
velocity seldom, falls below the sonic speed. Even otherwise it is fairly steady all aver
the trajectory so that for all practical purposes it may be treated a constant which is small.
Sae Table* 1. " N ST e e

- . ) o TasLe 1

r . ’ ‘
TABLE SHOWING, THE VALUE OF PARAMETRE ¢ AT "DEFFERENT POINT OF THE TRAJECOTORY FOR A
: . 3 1xoH 16 1h. SHELL B .

& . v f . [6) k_:_ k _a g ex 102
B f.s. .~ degrees. - rad./sec. "
rad./sec
0 . 2,000 30-0 24-8 0-954 3-840
1 1,726 29-1 19-0 0-633 : 3-343
2 1,515 28-1 15-0 6-430 2-868
6 1,075 22-7 7-50 0-306 - 4-080
12 . 860 11-7 3-44 0-145 4-224
18 751 —2-1" 2-56 0-092 3.623
24 703. —17-2 2-29 0-083 - 3-611
30 : 705 —31-5 2-43 0-088 T 3-617
36 - 785 - _ —43-7- 2-88 0-104 . 3-608
37-8 747 - —48-8 - 3-06 0-111 3.635

Average : 3-6449

APPROXIMATIONS ~UE TO SMALL YAW

As Siacei approximation is valid only for low-angle fire and since we have assumed
the projectile to be stable, the angle of yaw must remain small throughout the trajectory.
In the present case the aerodynamic coefficients fr, frand fy are independent of

yawt. , :
Using equations (5) in (4) we have
‘ Cm’ = — (w + kntan 8) n— km cos 8 + (g/v) cos 0 cos &
_ ' = (@ + kn tan 6) m—kncos 8 . ' ‘
As yaw remains small kn fan 6 may be neglected compared to w, for their ratio
: %— § tan 0 is much less than unity. ’

* Reforence(] p- 619 1 - | 7
t Reference[*] p. 585 - e )
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- Writing B
o= 1(g/v)cos 8 (12)-
The above equations become
m =—an—km 4+ o ‘ \
- ' ‘ } (13)
' = wm —kn

A solution of these equations may be expressed as
m=X,— X, +Xg— ..........

where

y 1,
-‘ Xn+l=—aT X, + —;—Xn (n=123....)

Approximately we shall assume for our subsequent calculations :

n = o/w ; (14)

k 1 ., 7 ‘ o

and we have from equations (7), writing cos ¥ = 1 and sin ¥ — W
' ¥ =vcosQ=¢q o ’ 1 ‘
Y =vsing - | | (16)
=gV -

The approximate equations giving t4heh motion of the shell in space may. now be
written out as : ’

#

¢ = — (R(0)m) cos 0 — lom g t. 6 | )
O =—ot+im E : L (1)
W' = kn sec 8 ‘ , . J
where n and m are given by equations (14) and (15) and the retardation function is
, 1 ' ' :
BW)/pr = Toig X v*P(v) , say U - (18)

C being the ballistic coefficient of the prajectile,

As the plane trajectory is a first approximation of the mean-twisted trajectory for
small yawing motion; the correction terms due to the cross-acrodynamic forces will be

¢ Pgossy) ¢ P(geos )’

small and hence we have from the first two equations of (17). 5
dé 104 g3 ' m. “ 104 3 .
48 Cq cos® @ x{l—-——%” X"l Cgtan&cosﬂ} a9
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Using equations (14), (16) and (17) we also  have the following approximate
equations ' , o
d 104 C cos 8 fm. 101 Cg tan 6 cos® 8 }
L= X <41l— — X 20
7 T N G ¢ Pgoose) §
-~ da 104C cos 6 km 10%Cg tan @ cos® 8 }
= T X4l X — 21
dg g P(gleosg) L o " g Pgfeos 6) &
a¥ ( fem 10t Cg tan 8 cos® 0 101 Cy a cos®0
LIS B [P i £
i~ U e °T ¢ Plgost) fr e
. dy' )
Y —an 0
. tan ‘ , l (23)
and
dz : )
=¥ \\ o \ (24)

The above equations of the mean-twisted trajectory are suitable for integration
. in terms of step functions similar to those of Siacci, provided suitable average values
for cos 8 along the arc of the trajectory are introduced. : S
v THE HODOGRAPH EQUATION

.rUsing equations (11), (15) and (16) we obtain

g \
2
km g[a%ogza Bq P(coso) - d ( a2 cost 0 )]
= € e

o ¢ 10t Coos 6 dq ¢ fr
correct up to order of ¢ and B is given by
=™ |
Xy

. whete B is a constant similar to the ballistic coefficient C.
5 } N - . r, : .
- Multiplying equation (19) by sec? 6 and us ng vhe above expression for 7%_'& we have

' . 8002 o2 12 ‘
d(tan 8) 108 C2 ¢ 1 X € x (u) tan 8

o X ub P(u) ) :
S g}
where ‘ )
= e o B é’;(u%) " ()
au) = .ﬁ% - S (27)

and A and p are the Siacci average values for cos 0 having their usual meanings as in

British Ballistic Tables (1940) and u is the usual Pseudo-velocity given by
vcos 6 ‘ :

-

=

(28)
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Equation (25) is thus the hodograph equation for the mean-twisted trajectory and

tnis being a standard linear equation in tan 6§ can be integrated in a closed form. But
as we have alrezdy pointed out the mean-twisted trajectory under consideration has
little departure from the corresponding plane trajectory, we shall for convenience of
calculations, seek the solution of equation (25) in the form

an 8 = tan 6, — gk | 10— 100 + ¢ { o) — 1) }] (29)

where I (u) is the Siacci inclination function for the corresponding plane trajector).rAand
is_given by

%
4
Iu) = 2 J’ ——&3—11—)0(7) du
400 .
U .
- % f ac.q(;t) du . (30) .
' 400 ' ~ '

and a straight forward calculation shows

u

Iw) = — 2 -———“(“Z‘(“) du
400
( c Y
_ _ Cu ()
22 X Cp.itan 0°> 0 I(u,) j» X — o du
400
c Cewymiw
2 u® @uxwI(w) , ' ‘
—gt x S x [ ZUx0I0 4, (51)
. 400 .

I (u) is obtained in the present form when we substitute ezlua.tion (29) in equation
(26). We note that the inclination function equation (30) is a solution of equation (25)
when e = 0. - o k )

REMAINING STEP FUNGCTIONS FOR THE MEAN-TWISTED
S TRAJECTORY . '

We may now obtain the various elements of the mean-twisted trajectory in terms

of step functions as follows: .

In equation (21), introducing the Siacci mean values for cos 8 we have

Caw _ 100Cu [, 10% Op8 tan 6
WS T Y e | 2

Substituting the ‘expression for #4n 6 from equation (29) in the above equation
and integrating, we get the solution for # up to an order of € as .

z=Cup [ S(u,) — S(u) + eé {Lr S (u,) -—-S (u) } ‘ ] L " (33)

k
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# here S(u) isthe;isPQ% ﬁmctiéﬁ of Sia;cci‘,‘and'ié given by
R e
’“AS@0*='fﬁ“(uWu e T et S T ()
400 RO R o '
: and the correctlon functmn S(u) iy gwen by

Yot o . O 2 k
; | SW*, &gxduu Wx@ Wi
' ' : 400 : ,
- 0“9 (‘W@ ;’;; T (u,) ) J wa? (u) x (W) du ~ (35)
' | o a00 ‘
Similarly from equatlon (20) we get the equatlon - ,
@ 100p [ g oo 100Cpan® Y gy
i AW P <. e X @ T X P (w) } - (36)

Putting for tan @ from equation (29) m the above equatlon and mtegratmg we geb
- the time function upto an order of ¢ as ; : :
??*§V<) H+é{rww—nwj] @n
 where T (u) is the Siacei time fu.nctmn for -the correspondmg plane tra]ectory a.nd is "
‘ ._\glven by : :

"'.u,

w'_t.T@aP@a ;¢, g'  e
el T e
e whose tabula,ted values are,; avallable and the correctlon function T (u) is. glven by
! u
T/u) & ad (9’1) X gfaz (u)x(u)I(u) du
= 2\ o

— C’pg(ta’n 0, ga’; I (u ) ) % Joe_z () x () du (39)

2400 v
Commg to the altltude functlon, we conslder equatlon (23) and have
z
dy = tcm 0 Rk d

du
. Puttmg for tan 0 and —-—- from equatlon (29) and equatlon (32) respectwely and
- reta,mmg terms of order upto € and mtegratmg we have '

' : Ly C;L (
b y/x = tan f, e Ll(uo)‘i‘f“(’“)

%»,MM»AM+@waw4w&
e S(u>-8(u e {s (uo —-s(u)}

oy
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where
4w -‘_—fu w@) I w)du - - @)
: 400 " |
is the Sia.cciv a.ltitude function. for the piane trajectory (tabulated values available) and
. ‘ .
A(u):fuoc(u)l(u)riu
400
. ’ . » : B
— %(L; )2>< gfu o®(u) x (u) I2 (u) qu
400/ N
% .
—{ tan ?o — 56;{; I (u,) } Cy,g fu o2 (u)lx (w) I (u) du (42)

o e : : : 400 :
is the correction to altitude function for the mean-twisted trajectory, -
' | THL DRIFT FUNCTION

- Here we shall introduce two new functions which are due to the mean-twisted tra-
- jectory alone. These are (i) the deflection function which gives us the angular coordi-
nate ¥ and (i) the drift function which gives the z-coordinate that measures the depar-
-+ ture of the shell from the plane of fire at any time. As can be seen from the nature of the -
functions for drift and the deflection they can he evaluated by means 6f the elements
of the plane trajectory alone, i '
o-order * and using Siacei

' Now considering equation (22) and retaining terms up
. mean values for cos 6 we have ~ - - )

ey TTeasn (f\) X = i 43)
”'Integra;ting this equation we get’ o L / | - ‘
¥=Ceag x (*-’;—“-)3 [A(uo)-—A(u)] o R
~ where ' '

2

\ 400 )
“'is ‘the deflection funetion. ‘ U
© From equations (24) and (32) we have on similar considerations

== Cleag. 5L IA @) — A (] we () du i
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and on integrating, : _ B ' .
D (u,) — D (u)] :
2z = Ceq (”’)X’[ e 46
I\X) X B =5 | )

where
, 5 :
D) = {14 () — A W] ()
400 : ,
i = A (ug) [8 (u) — 8 (W] — [4 () — d (u)] (1)
and o o | |
aw= f Auo @ o (48)
, 400 ‘
The tables for the deflection function A\ () and drift function D (), which are

similar to other Siacci functions, are prepared and will hold good for any shell as the
integrands of these functions are mdependent of shell eharactenstlcs ‘

EXAMPLE‘

 Consider & 3 inch 16 Ib. shell fired with a muzzle velomty 2,000 f.s. at a quadrant
elevation of 30° The ballistic coefficient C estimated aceording to 1940 Law is 1-35.
The gun has a rifling of 1 turn i in: 30 calibres. 7

4= 0139 Do
: A S e T
S B 0115 ‘ N e e
: N = 1675 rad. /sec.. |
= 1927 rad./sec. -
¢ = 0-03645

and the distance of the C. G. from the base is 488 inches. We shall calculate the drift
- and the correction to the various elements '

() Dript B B
S _ {2\ [D (ug —D @)
‘-Z/x"o‘“”x ("X ) (8 uf) =5 @)]

where u, = 2,000 fs. and w, the final pseudo-velocity is 530-1 f.s. Thus the drift in
. terms of the a.zuxmthal angle is 83 minutes whereas from the experlments conducted in 4
Portsmouth Jump Card Trials it is observed as 89 mmutes

(¢8) Corrected mnge v
g 2= Op[S u) —S () + & {S () =S W]
- =1-21845 {22708 00000 +}- 160- 40064}
| = 20,236 feet
= 9,745 yards nearly,
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: (m) Corrected time qf ﬂ@ght :
Cup

: _,g = [ (uo)—-T\u)%—erT (uo)—T\u) }]

= 144204 {26 210000 +0- 262646}
. = 382 seconds. ‘

o and the correctlon in the tune of ﬂzght is +1%. :
s .' () C’owected angle of fall E

ta.no—tan 00 g\z [qu,) —~ I(u) tal { L) —Iu)}]
l — 0-577350 — 1011236 {1-718,700 — 0-003468}
= —1-157154
= 49° 107

‘: is the corrected angle of fall and the correctwn in the angle of fall arising due to cross-
: aerodynamm *f'orces is roughly 1/ 12 of a degree

CONCLUSION -

: Thus by thls anajlgmm, corrections to range, time of flight, angle of fall etc ‘an be
o ;gl en and the drift can also be predicted provided the shell constants are known. - Further *
it s observed that table of deflection and drift furictions provides:an a.d&xtmnal table

to Smccl ta,bles wherefrom the drift can be calculated for any shell 5
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