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" With a specified characteristic velocity, the transfer trajectory for the minimum transfer
time has been investigated for the general case when the initial and final orbits are elliptic. Parti-
cular cases when either the initial or final or both the orbits are circular follow immediately.

Optimum transfer trajectories between two orbits have been considered mainly
from the point of view of minimum characteristic velocity as this corresponds to minimum
energy expenditure'. Recently Lee & Florence? considered transfer trajectories which
gave minimum transfer time for the particular case when the initial and final orbits were
circular.  As elliptic orbits are more important, it is proposed to generalise Lee &
Florence approach to cases where the initial and final orbits are elliptic. Since cirele is
a particular case of an ellipse, other cases where either the initial or final or bhoth the
orbits are circular follow immediately.

MATHEMATICAL MODEL
Let the initial, transfer and final orbits be taken as

h? = Kr [l4-e cos 6] - (1)

H? = Kr [14+E cos (6—6,+)] » (2)
b2, = Kr [14e, cos (6—&)] \ -(3)

The ihitial and final trajectories are non-intersecting, coplanar and non-coaxial. Let
(r, 6,) be the point where the space vehicle enters the transfer trajectory and (r,, 6,) be
the point where it leaves and enters the final orbit (Fig 1). Let - '

b,="0,+9¢ : 4)

Let V réprgsent the velocity, and % -+ 7 the angle between the velocity vector

and the radius vector at any point. Let magnitudes pertaining to the initia) and final
orbits be denoted by suffix 1 and 2 and those on the transfer trajectory at entry and
exit be represented by suffixes ¢ and f. From any book on orbital dynamics one may
show that®

n K 1— coso - cos (Vi + )
r, 1, Vi \ cos? ¥ - cos ¥
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where a:is the semi-lengtl: of the major axis of the transfer: tiajeetbry

Vi ry cos ¥; = Vry cos £

S : 1/ 1 )
2 — V., SN
V'f = Vit + 2K (7'2 7'1)
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Fig 1—Geometry of transter
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Agam for the launch and destination orbits -~

tan 7, =k K o ngm 6 o o 11
a0 7, = K ¢, 7, sin ;021 + @—€). - )
v, = +E [-f: _ KO =) (15;92‘)",;]? A (13)
Y g T F (14)

The characteristic impulse is given as
= [Vl2 + V2 —2V7, V; cos Yy —Ys) + gt 4
‘ o (16)
[V 2 1 Vf —_ 2V2 Vf cos ('}’2 —_ Vf) + VEZZ]Q

where V4 and Vg ,are the surface escape velocities of the planets in the launch and -
destination orbits respectively and are zero when gravity effects of the planets are neglect-
ed. Due to relations (9) and (10) it becomes ‘

I= (V4 Vit 2V, Vicos (ry—7) + V2 11 + |7t vet 2K(~— —)

T2 n
(16) .

1 }

— 27, é Vikcos?; cos 7’2+s1ny2( V2,42 K(— ————) (V@ kcosV;)? \) %—I— V3g 2].

: " &

Evidently I is a function of three independent variables 8,0 and Vi
TRANSFER TIME -
The time spent by the space vehicle on the transfer trajectory is given as

1=V | B—p—Eeng—sng | a7y

where B; and B, a¥e the eccentric anomalies of the entry and exit points on the transfer
trajectory and

E + cos (60— 6, + )
1+ E cos (86— 0, + «)
In terms of E, a, « and ¢ (17) may be re-written as
—E%sin?
g_ . _1( V1 E281n2 (L gsm (o-+o) — sin a+E sinyp } ;
=0 an -
T _\7} cos% n Ecos(oc " %) {1+E cos (9-+a)] (1-4E cos o) ]t

cos B = - (18)

| : | | (19)
which in view of equations (1) to (8) is & function of three variables 6;, o and ¥;
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MINIMUM TRANSFER TIME

To get the optlmum value of (19) under bhe condltlon that I'is a constant, one writes
the Lagrangian equations as

T al -
S T =0 (20)
oT ol V '
o7 + A rr =0 S (21)
aT ol
e T e =0 (22)
and the constraint equation is
_ I—1,=0 (23)
where I, denotes specified value., ' )
Eliminating A from (20) to (22) ;
oT el ol ol _ o
%, oo 2o a0, 0 (24)
T ol . .aT ol | .
o0 oy; - oy, ~ 9» 0.- ’ (26)
* From (19) one gets '
3 . e
ar _ o [PX (M—1) cos? y; + Qr§(2—M) tan y,+X1  RX (1— cosp)®
VK E o @My T U cody j(%)
-3 . ' a
ar _ _a2 rPY(M—1)cos’y; n QY r, RY(l—cosg)? (1—EB2)?
? VK [ E @My M Ucos: ' [1+E ‘cos(({a—‘l—oc)]z] (27)
3 ' :
or _ PMEeosy; (. . : QZn
o = VE [(T-?z—oEE)—E (Sm Vi—M sin @ cos7i-om (“"”')\) @My |
R (1—k) (1 — cos @)
U sin y; cos 7 ] (28)
Where
b oo
Ty
- Ty V,:Z
M=—%
U = (l—k)zcoty-——2(1——-lc)sin<9—]—Ztanyi(l———coeup)

\/1—-E2 gin o (2+ E cosa) . sin (ax+0)[2-4 Ecos(x+9)]
[ "~ (L4 E cosw)? - [1+Ecos (x+9)]F ]
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sV (2—M)yT B T

Q= 3
27*14;2" : _ A
U § S S ]
""(—_'J) [l_l._Ecos((P—i—a)] (1+ECOSO£)2
-k M2 cos? 7; (tan ¥, — tan ¥;) -
X = :
(1— cos o) ;
Y = m_ [(k—l)sin<p+ (1-—-COS‘(p) (tan?; + % taﬁ?)]
" T—cos 9)? T ’
I s
Z=M[2tan7,-—— Tﬂ—]
. 1—coso

From (16) one gets

ol 1.3 KX . ")(‘»Vlcoé(y,-——-)’l) K sin ¥,
N e ) I e i

. (V - V dOS (yz'——yl))_l_ V'i Sin (71;—71) (-Vl-;—,r l.'[{/ )} ]
1 "1’

1 - KX ' ry hy cOS v'}’,- K sin 7,
wpn (G —vren) (-2 ) A0

(. 2172 -— k Vi 068 Y; co8 )’2;—@ sin Y5 )

+(1—- K )( G hy —kV, V; éin‘)’zcosﬁ’,-) —-m‘.

ry V2 7y 7y
khy V; cos?; V,sin % [ 1 (KX
+ —-—-—-—-—r (t an ¥; — tan 7’2)+ —a [—2-“(?* V2 tan)’l)
! Y tan v, \ [, )2
,(1—k2cos27i)+K(taI; LEE, al: 2')--(]0'V,~cos’}’,-)
1 2 : .

' (tan ¥, — tan 72)]” (29)
21 _ 1,9 KY (1 Vy cos (¥; — )) 1 [—T KY (_rl g 008 ¥;
90 é 1 B Vi Ty 7y B 7 w)

‘ K si / khy V, V, ;
— 2 _311_7’2( 2V, =k V; cos V; cos ¥y — 2 Vo Vi 008 7
hg ; i . K .

__Gsin.'yz) + (1-—- K )(Grhz-——kV V; sm)/a cos?’)

7o Vo? 2 .

V, sin v, [KY K tan 7, : ]
+ 22 = 2 [_271_(1__]&20 82 ¥;) — Py 2—|—(kV,- cos’}'i)%an‘}’z]j}(?)o;



8 Drr, Sor. J., Vor. 18, ApriL 1968

a8l 1 —4 K7z Vycos (V; — Y\ - ]
2 'yi = —é ]1 [ "'1 (1 — 1 Vi ’ 1 ) + ZVZ Vl sm (yi - '}’1)]
L e e Ay R
sin ¥, K ’ 9K E I si
— .Vz Gm 2 { Z (1— &2 cos® ¥; ) + _.___.Z_Sil.}_l] (31)
- G N . ‘ Ta J

Where

¢ = [ V2l — k2 cos? 7,-)+2K( LA )]’1’
Ty Ty
Substitution of (26) to (31) in (24) and (25) gives two equations in three unknowns
8y, o and ¥;. With the additional constraint (23), one can solve them numerically to
get 0;, ¢ and ¥; and then obtain all the parameters of the optimum transfer trajectory
and "the minimum transfer time. ‘

PARTICULAR CASES
Three particular cases of the above problem are,

(i) When launch orbit is circular and destination orbit is elliptic. This can be
analysed -by taking e, = 0 and 7, constant equal to radius of the launch orbit.
‘Further simplification ¢an be affected by taking the line joining the force
centre and peri-apsis of the destination orbit as initial line for launch and
destination orbits and thus £ = 0.

(#5) When launch orbit is elliptic and destination orbit is circular. In this case
e, = 0 and 7, constant equal to radius of the destination orbit. It can also be .
treated proceeding as in above - general case.

(¢5) When both launch-and destination orbits are circular. For this case (1) and
(3) are transformed to
h?

o= 7 = 7, (radiusof the launch orbit) (32)
h22 - ‘ . e . .
r=g-=nh (radius of the destination orbit) (33)

Due to isotropic symmetry of the launch and destination orbits about the force centre,
the analysis of the transfer trajectory will be independent of the launch point. Thus the
launch point can be chosen some fixed point  (r;, 8,) and destination point becomes
(rg ,0;). The analysis can be performed. proceeding along the lines of that of the elliptic
launch and -elliptic destination orbit and remembering that : »

yel=92:0A, P , (34:)

and r, and r, have constant values given by (32) and (33) respectively. Since 6, has cons-
tant value 8, (20) and hence (24) vanishes and the equations determining the optimum
solution reduce to two only, ¢ e, equations corresponding to (26) and (23).
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Taking units of length, velocity and time as in reference 2, (19) and (16) in this case
can:be transformed into Lo R T N

1 12 —1 — Y /A Wi [ - ) ‘
T=F= E:[—"le] (cos ! [ "'Qvﬂl]_cos*l[ ‘9*‘1*«E)'=~‘]

9E ¢E
+ E‘l sin [cos—l(q—_ (;LT E)), ] — s’in‘ tc-,OSu_1 (9;*_”7(2:@ )J ; ) (35)
and ,
e | o) 02D e |
) + | ; (_3::2 \/ﬂl—:—E))— (1—E) z + Vi’ }% (36)
: _—n q '

where g is peri-apsis distance of the transfer trajectory and » is 77 expressed in terms of 78

From (5) and (7) £ is a function of two variables ¢ and y;. Similarly from (8) ¢ is
also a function of ¢, ¥;. Therefore substituting (35) and (36) in (25)

(% ok _2h o) 2 o _ o ) o
o6E ' aq &g = ok 9y & i bp |

But

E o
( ok &g oE . g ) %0
go 87; &v; - o9

as can be verified from (5), (7) and (8)

Hence

o8 q*~.._ aq. Y =0 (37)

[43}

(35), (36) and (37) are the equations obtained by Lee and Florence?.
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