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Rocket trajectories in a gravitational field between two terminals with specified velooi-
ties at each terminal are investigated with a view to minimize the total velocity inerement
required in initiating the rocket along the transfer path at the first terminal and in the attainment
of the given final velocity at the final terminal. The equations are transformed for transfer
between circular orbits and numerical results for Earth—Mars transfer are calculated. Finally
particular cases of the above problem are discussed and Stark’s results is drived therefrom.

NOMENCLATURE

u; == given initial velocity

% = departure velocity with which rocket starts along the transfer trajectory
just after the impulsive velocity change at the initial terminal,

uy = given final velocity to be attained.

uy = approach velocity of the rocket just before the impulsive velocity change
at the final terminal. '

7y = departure angle (the angle between w, and the local horizontal).

y» = approach angle (the angle between u, and the local horizontal).

y; = angle between «; and local horizontal.

- yy = angle between u; and local horizontal.

pi = radius vector corresponding to igitial terminal (Force centre as pole).

ps = radius vector corresponding to final terminal.

¢ = transfer angle (angle at the force centre between p, and p,),

K = gravitational constant times mass of the attracting body.

Minimization of fuel consumption is an important problem for transfer trajectories.
. Stark? has discussed the problem of finding rocket trajectories between two terminals in
space with & view to minimize the velocity increment added to an arbitary initial velocity
at the first terminal, with the restriction that the resulting trajectory passes through the
second terminal,

The present paper investigates the optimum trajectory, that is, trajectories of minimum

fuel consumption between two.terminals in space for a rocket with a given initial terminal

- velocity so as to attain a specified final terminal velocity. An optimum trajectory here is

that which minimizes the total velocity increment at the initial and final terminals, An

inverse square gravitational field is taken and the impulsive thrusts are applied at the

initial and final terminals only. Particular cases .of theabove prohlem are also discussed
in the end. .
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DETERMINATION OF CHARACTERISTIU VELOCITY
The square of the veloclty change Aw; at the initial termmal will be
(AP = u? + u?— 2y Uy CO8 (v —y;) (1)
If the rocket is requlred to acquire a velocity u at the final terminal, the square of velo-
city change Aw; is glven by '
(Auf)2 = us? + uz — 2 % Uy €OS (Y — ¥5). (2)
conservation of moment of momentum per unit mass gives
Uy Py CO8 yy = U, py CO8 ¥, @)

Rocket starts along the transfer path w1th the departure velocity u,, moves in the gravi.
tational field and acquires the approach velocity u, at the final terminal. w, and u, can

bo related by the equation _ _
11 B
smwmak (Lo1) ,
. “ P2 P1 o - @
Substituting"from eqflatlons (3) and (4), equation (2) becomes

1 1
,_,,.Auf)ﬁ—-uf -—2%, [uldcoshcos?f-i—smyf{ul +2K (_._._ __)

P2 Py
' 11
——ulzdzcosz‘)’,}]—i—ulz +2K (————):0 (5)
: P2 P
where ‘ v =& . p
P2 ‘ . : L
churacteristic velocity Aw is then given by i
Aw=|Aw [+]ay] (6)

where Au and Aw; aregiven. by equatlons (1) and (5) respectively.

ANALYSIS OF OPTIMUM TRAJECTORY

The relation between departure veloclty and angle for a trajectory pawmg through
the two specified terminals is expressed by?

F K ( 1—cos ¢ ) n cos (¥; + 9) o (7)

U2 cos? 5 cos 7. el
et L ! nl< 3

which m;n be - written as ‘
: — d, 2 .
ul = K (1 — cos & sec? o, ' @)
p1 (8 +sin ¢ tan y; — cos )

Povoptimun transfer trajectory ' ‘
o(Aw o ' R -5;‘(9) '



3

SrivasTava & SiNeH : Optimum Inter-Verminal Transfer Trajectories 2r

Substitution from equatlons (6), (6) and (1) in equatmn 9) ylelds

1 . -
__W[Pl—»ﬂu{chos(y — y;) — Uy 8in (7 ~7’)}]+
1 [P ~--2u[dcos rP €08 yy —- U, sin }—l—
A u 1 f vf i 2 COB ¥y —~ Uy SIN y;
_Snyr Py (1--d%cos? V) + 2 uy* d cos y, sin ‘)’113 =0 (10
2 Py oJAa
where
K (1 — cos ¢) sec? 7 3
P,=2 - —-1 .« P,
K(1--cos¢)sec®?,

py (d + sing tan y; — cosd)?

P3='[u12+2k(

-[2 tany; (d — cosg) 4+ sing (tan? — 1)]’ (11}

1 -1 ‘ 3
— - u.2d? cos? ]
P2 P ) 1 NG 41

(10 ean be transformed into an equation of single unknown 1, and can be solved numeri-

cally for y, which will give optimum departure angle yy; (subscript ‘0’ denotés “optimum
values) for specified terminals, initial velocity and final velocity to be attained. Having
calc-nlated Y10, Values of ug, Uyg and y,y can be obtained from (8), (4) and (3) re@pectu elv

PRANSFER BETWEEN CIRCULAR ORBITS

For transfer between circular orbits obviously y; = y; = 0 and (10) can be eas:ly
transformed into

[4 tan y; + sing (tan? y;— 1)] [ B gec? 7, (0 + B —
4 + sing tan 7, (Afsingtanvy "
- co8 yy {aw; + Bd uf)’e]+ 2 sin-y; (ow; + Baug) = 0 ~+(12)
where
B E (ll—— cos }¢)
P1
A= d—-cos ¢
¢ = K(ll-- i)-|~uf Ca3)
Pz P1 , g

- B sec? 7y 2 on. ./ -B-— < 1—% -

FO%_[(A + sin ¢ tan 7,) ot 2 (A—i—sin:ﬁtan')’l)]

B sec® 74

B %
p= I(A+sm¢tan)’1)+0 2duf’\/ A+sm¢tan71),J

(12) when solved will give the optimum departure angle for the transfer path that
requires least fuel consumption in the impulsive change over from the launch orbit to
the transfer path at the 1n1t1a1 terminal and from the transfer path to the destination orbit
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at the final terminal. From the knowledge of optimum transfer angle other characteristics
for the optimum transfer ‘path:can be-easily calculated with the help of (3), (4) and (8).
It is to be observed that in (12),d signifies the ratio between the radii of launch and des.
tination orbits whereas ; and u; denote the corresponding orhital velocities,

NUMERICAL ILLUSTRATION
a . ‘FABLE 1 ' '
NUMERICAL RESULTS FOR OPTIMUM HARTH-—MARS TRANSFER

Transfor - Departure’ -~ Approach - Departure =~ . Approach
Ingle angle . : angle - velocity - velocity

¢ , " Yy km/sec km/sec

co ‘ “ : %y

B T 2508, g7

o S 63%457 4l°4g 2687 .. . 10-46
s o 30°25" 2088 3110 1883
90° 12945 10°8' 78258 21-18
135° 150127 4°49" 3276 . 21-48

180° 0° 0° . 8277 21-4

characteristics for optimum Earth—Mars transfer for various transfer angles are ohtained
by-solving the. above equations.-' A two dimensional solar system with" circular planetary

orbits is assumed. ‘A compariéon with Stark’s? results shows that as expected A%

U;
’ R V.
is always greater than A Vin.

o . B 1 .

An observation of Table 2 shows that for any transfer angle, Aw, is greater than
Auygand it is encouraging result in the sense of structural economy for space ﬁéﬁx‘?igéﬁon,
Since the larger fraction of the fuel will be consumed ‘up at initial terminal leaving the

- smaller fraction to be carried for use at thp‘;‘ﬁn‘al terminal.

TaBLE 2

TERMINAL VELOCITY CHANGES FOR OPTIMUM EARTH-MARS TRANSFER

Transfer Velocity change Velooity change

angle . at initial at final termi-

terminal nal :

¢ km/seo km/sec u, ' U

5 3863 21-99 o130 0-91
1 0.0 B e 1
45° 1592 925 » 0-53 ~ 038
90° 7-50 4-94 0-25 021
135° . 447 . 322 0-15 - teiniiguggt

180° 802 - 2:61 010 0-11
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The variation of A:' and Avy with i‘eépect to transfer angle is shown in Fig. 1.

s PARTICULAR CASES

Two special cases of the above problem are (a) rocket trajectories between two given
terminals characterized by minimum velocity increment to a given velocity at initial
terminal, (b) rocket trajectories between two given terminals cha,ractenzed by minimum
velocity increment to a given velocity at the final terminal.

For trajectories of type (a), characteristic velocity is given by | Aw; | and the de-
parture angle can be obtained by solving the equation

P, - 2u; §Pycos (Y — Vi) — Uy sin (Y- ¥)} =0 (14)

knowing departure angle, departure velocity can be obtained from (8). This is an alter-
native ' method to solve the problem discussed in reference!. Characteristic! velocity,
for rocket trajectories of type (b) is given by | Auys| and their departure angle can
be obtamed by solving the equation

Py — 2us [ dcos?s§ Py cos¥y — uy sin Vit +

sin 7 { P, (1 — d2 cos? 71) + 2 u12 d?' co8 71 sin 7’1}] =0 (15)

2P,

Havmo found out departure angle (8, (4) a/nd (3) Wlll give the depaa'ture velocity,
approach velocity and approach angle respectwely Thls is a second method of attack
for the solution of problem of reference? . = :

Stark’s result can be easily derived from (14) whlch can be wrltten as

2u, 8‘}'11 — Qu; {671’ cos(?’——«’}') —ulsm(y~y, } 0 (16)

. Also (8) can be put down as
' ’ "B Sec"" 2/1
“A + sin ¢ tan ¥y

2 —
Uy =

. (17)

where

(<)

v, = u, tan¥; — Lﬁf— (18)

™

Substituting (18) in (16) and writing

Uy = Xops 866 ¥y

arr

V.0 L . s 2 ) t V., = B A 1
I & o 2% 50 1} an ¥, = -Xoptz =n 3

Fig. 1~Varfation of " and Auf with respect u; cos V; = X,

: g #e . .
to transfer angle wsinY; =Y,
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we get Stark’s equation! . : ,
(Aa + sin? ¢) Xop* + (4 Y, sin ¢ — X, sin® §) X3, 4 (B Y, sin ¢) opt — B2 =0
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