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-The -paper-deals-with the application of _variationai principle to the optimization prob-

lems of multistage rockets. Conditions have been deduced - for - extremising-a - general -~ .

‘pay off’. Two particular cases have been discussed in details. i L '

~ Mielel 2 and Breakwell3 have made an extensive survey of the general formulation

of trajectoty optimization problems and of the efforts made to solve them, by employing
the discipline of the eafcutus of variations. In a recent paper Leitmann? has solved the
general problem of extremising a tértain function called the ‘pay off’ or ‘performance
“ndex’ and has derived the necessary conditions for the existence of such extrema and the
nature of the extremal arc for the case of a single stage rocket. In the present paper the
variational technique has been employed to a multistage rocket vehicle and conditions
obtained for finding the optimum flight path under the assamption of constait thrust in
‘each-stage and no cbasting period is admissible between the stages so as to extremise a given
pay off. In general, the state variable mass and thrust experience step discontinuities or
finite jumps at the staging points, Also, since the thrust can be controlled in magnitude
and direction, the problem of finding the optimum thrust direction is considered when the
vehicle is supposed to be flying in vacuum and constant gravitational field. Two particular
cases of vertically ascending staged rocket are then considered and conditions deduced for
 finding the separatien times in order to maximise the final velocity and payload mass res-
pectively. - : : ; » ' :

VARIATIONAL PROBLEM

Considering the motion in a vertical plane in a constant gravitational field and negli
gible atmospheric resistance, the equations of motion for a multistage rocket are
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These equations contain seven physical variables p;, ¢;, ;, Yi» i B; and 9, for a,n};par’bicular

stage and there are five equations combining them, Thus there are two degrees of freedom

i.e. there are two variables (say f; and 6; for ith stage) which can be controlled and are
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to independent admissible variations. Thus the problem is to minimise G (Z;,
Lif ostﬁv&:’heré*z i,y iy are the- state-variables, subjeet to given:ermina}
eonditions. ¥~ "ot T R RNV N S

Equations 1) can be rTe-written as
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Introducing Lagrangian "gnultiplie}'s (i=12 ...., N;j=1,2...., 5) and
forming the fundamenta] function ) '
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the problems reduces to minimising @ subject to constraint (2) and givén ﬁérminal condi-
tions or minimising SRR LR S .
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Thea,!néﬂm:nmed variable Lagrangian multipliers jX; are continuous fmibtiz)?hs of time since
the gonstraint equations mugt be satisfied at all points of the trajectory’ They may
experience discontinuity at the points of staging. CER A

Thus our probléin reduces to that of the"Belza tipe and aceording to Bliss® the ex-
tremal pa?hv.must not onl‘y__ satisfy equations (2) but also the Euler-Lagrange equations
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As a consequence of the above equations, the %6116winéf5{ﬁrst” integral must also hold good
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where k; 'is an integration ¢onstant. ~ Since there are discontinuities in the variation of
mass at the staging points, the conditions !Wh'i(}hr are to be satisfied at such points are given

by the ‘corner conditions’ L.&. -
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whe're nﬂgaﬁlve and posmve mgns lmply reﬁpeetlvely the emld, q ;
diately after the staging.- Moreover, the transversality condltlog-«——whmh glves cb@nge&
in boundary conditions as also change in J must be satlsﬁed and is glven by
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- For.the problem: under conmdera.tmn we have accordmg to expression (3), augmented
functlon as ,
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Therefore from (5), the extremum path must satlsfy the follawmg equatums togeiher w1th :
equations (2):
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SOLUT ION OF THE EQUATIONS

Thus the two sets of equations (2) and (10) must be mtegrated?or glven tnitial and
boundary conditions to give the optimum tra}ectory Some of the equations (10) can
readﬂy be mtegrated Le. from (100) and (10d) We have
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‘Agam swee during flight"e; B;) ‘mi’ 3£ 0, equation’ (10f) shéws thas for ‘optinttim path
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-Also as a consequence of condition (7), we have
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which implies that, at the points of separation, where thrust becbrﬁes*a ntinuous, the
Lagrange’s multipliers are continuous, Thus they are continuous throu ghout the powered
phase, Actually from {11) we see that the constants a and ; are absolute constants having
the same value throughout the flight period. From (13) it is clear that 0; also does not ex-

perience any discontinuity at the points of separation.

~ Now relation (6) gives the first integral in this case as . - v ...+
o b ( A 608 6; -, sin 6 )~ AgH Art A g Br= K (14)
"y i i i i i e
t=12,..., N

where k; is an integrafion constant. . Nothing can be said about the continuity of the, cons.
tant k; across the staging points; it may have different values in different stages.

Also for this problem t'%ie transversality conditién i8) gives
E [ 3G + Adp; + A dg + A 00+ Ady; A X dmy ]"‘att}%ie (18)
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" NowifGisa function depending whdlly on the conditions at the end of powered phase’
and all the state variables at the iitial point{ aré®nown, the above can be written as
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where )— and ( )+ represent resﬁéctivel& the conditions just before and
immediately after staging. Sinee the state variables and the Lagrange’s constants are
continuous throughout - the flight period, their variations just before and immediatel
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-after the staging are.equal and we can, therefore, write (K6) as . = o
[dG + A dpy + ) dgy + A doy + A dyw 4+ A Imy — by dt ]
N Y N N ,

B Ll () () ) o

“Hence for optimality, the conditions to be satisfied at the points of staging are
_(4)_ At the end point e e e ;
RSt heis [JG + 32 dpy + A dgw + A dox + A dyy 4 A dmy — by dt ]= 0 (17)
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and

(v¢) at the intermediate points
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“If the staging ﬁmqs are not specified, the above canbe ré:v%fiyﬁen as -
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A a consequence of (14) this becomes
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SPECIAL CASES

Case I—We now consider a particular problem of a vertically ascending two stage
rocket'where the initial mass, the payload mass and the total time are specified and it is
required to find the staging time ¢, so that the final velocity at the end of powered phase
is maximum i.e. ¢ == —g,. Since y, is not specified, we have in this case

A=0, A=0 i
2 2

Therefore .
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Now if o; \(, 1=1, 2 )l 1epresents the ratlo of the structure mass to the maissof the
propellant for any stage, then :
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~ Since ¢, is already given this expression gives ¢; for the optimum condition. In the partl-
cular case when €= 6= ¢, b= By=P and o0; = o, = o this reduces to give

. 1 r - = cﬂ R s e w."‘-?.‘
. lg (o +2) Imo B‘tl 1’1‘0) s 18 (tz i ’51 .ﬁ ?} - g
Ny - cfo (ty—1t) ‘ :

th =P (10} im— b4 (T —BE& =i
—eBotfim —pu) fmy—pt (4o}




TAWARLEY $ Optlmnzatxon Problems of M, S .Rockets 19

ek

The above analysis can easﬂy be extended ’eo cover the case when the number of sta.ges

is ‘morex4han t;wo ‘ I ; ; AR ER - SR :N_;

Case 1IAnother problem of .the smular nature. is :, dlven the mltlal condltmns
to find the maximum payload which may- obtam a speclﬁed velomty at the end of powered
phase whiose duration is not ﬁxed The helght to be. attamed Is also glven to be free’.

B thlsca.se S i CG=—my EREREIRECE R =
Therefore from (17), (20c) and (20d), we have '
[ (,52}"“1 )dmz'l‘z)‘ d% '1"47‘ dyz’i‘{kz"ﬁa : + 02)} dt] =0

Since m, ag:ld’ t, are not known and y, is free, we must have =~ ’ o
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With- the ‘Thelp of relations (14), (26b), (26c), we ‘deduce that.
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Again on 1ntegrat1ng equation (10c) and a,pplymg the condltlon that (sX) ; C=la
2 % —

we obtain |
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Hence from (19) we have

6B . By ] [ o ][1 (o
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From (27) and (28) ‘we can solve for t, and ¢, and thereby from (20) we can know the maskes-
at the separatlon points as well as the required maximum payload.

“ The above can again be easily extended to the case when the number of stages is more
than two. . )
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