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The uswal machine interference problem is considered along with the interruption process to .
the service activities of the operators. If an interruption occurs when the server is attending
a machine, the former has to wait till the service of the latter is compléeted. Some of the
charaoteristics of the process are examined by considering the tour of the server’s state
coordinates in the state phase space. ‘

The ‘machine interference’ problem discussed by Palm!; Naor?, Takacs® e al.
assumes that’the operator is always available for restarting the machines provided he is
not already engaged in the repair activities. This assumption is referred to as the complete
availability of the server. ' T

In many practical situations, however, the above assumption is not true. For example,
fetching of raw materials, tools ete. .in general, forms an interruption process for the -
repair activities. Consequently a theoretical model has been proposed in the paper taking
into account the interruptions to the repair activities. b ‘

\

In an earlier paper?, the author has studied the machine interference problem with
_interruptions of preemptive type which was termed as ‘ancillary duty’ of the process. In
this paper, the machine interference problem will be studied with interruptions that are of
postponable type. The above discipline is widely known as ‘head-of-the-line’ priority dis-
cipline in priority queuing literature. Cobham?® introduced this discipline and the other
notable workers in this area are Kesten & Runnenberg®, Miller?, Jaiswal® and =~ Gaver®.

It may be mentioned that there have been many attempts to relax the complete avail-
ability assumptions in various ways. Particular reference can be made o Benson®, who
introduced ancillary duty along with repair duties, and Ben TIsrel and Naor!! who ‘pro-
posed the ‘Ends down’, model in the machine interference problem. - \

ASSUMPTIONS

. An operator is incharge of N machines that run continuously but fail from time to
time and need servicing. The queuing model, considered here, has the following assump-
tions. - : - '

Arrival process of Interruptions—If x denotes the time measured from the cleaning
of an interruption to its subsequent arrival, then the sequence of &’s are identically and
independently distributed random. variables having the common probability distribution
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_ when the server is busy and has the distribution; and

* ‘ 3 co
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when the server is idle. The server is idle if and only if all the machines are running and no
. interruption is ‘waiting or being served. The introduction of two different arrival rates of

' Priz <r} = -

~ nterruption process helps us to discuss two particular cases namely A7 = A, and A} =0. The
former case is defined as ‘Independent Interruption Model’ since the interruption occurs

independent of server’s position while the latter is termed as ‘Active Interruption Model’

where the interruption occurs only when the server is busy. It is further assumed that
not more than one interruption can be present at a particular time. '

Cleah'ng Process of Interruptions—The clearing times of the successive occurrences
- of interruptions.are identically distributed random variables { X' } having the common

probability densit'y 8,(x) where Pr{ e, \gaz;}‘ = { Sy (7) d-r

The arrival process of Machines— The running times of each machine are identically
distributed independent random variables having the exponential distribution with mean

~——. Thus if a machine is free to arrive at time, ¢, then it will fail in the interval (¢, t--dt)

2 .
with probability A; dt 4~ 0 (df). v : ;
The servicing process of Machines—The service timnes of the svccessive failures of the
machines are identically distributed, independent random variables having the common
- density S, () where the probability that the service time is less than or equal to z is

~ given by f Sy () dr.-

~'We shall assume that the above four processes are statistically independent. -

- Queue discipline—The iﬁterruptions are always attended prior to the service of the
machines and if an interruption occurs during the service of a machine, the former has
‘to wait till the latter’s service completion. Since the service of the interruption is post-
poned till the service completion of a machine, this is termed as postponable interruption
model. ) ‘

Let us define

"r)’,' (@) = [S,- (w)/{l——F,- (w)}]‘ BN - 1,2) (3

where Fi(@) = | 8 (@) dr  i=12)

“Clearly n (%) is the conditional probability density of a service completion during the
interval (z, €4 A ) given that it-is not completed up to time . Further the Laplace
. transform of any real valued positive function f(t) is denoted as f (s) where '

FO=fes s )

provided the integral on the right hand side isvconvergent. Thus §.~ [:e] (@':‘],2)' is the
Laplace tramsform of S; (x) [¢=1,2] for Re(s) =0
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Ty . AUXILIARY LEMMAS
‘We shall prove that - ' A

Lemma I: If ay, aq,.. ... el é,ndl;, byeiiiveenss b
_ such that : B LA 1 ; i
b, = Z ( ‘: )GN——.? (7'——-0,'1,2, Yesrninea Net)
? . i =" e ¥ SARI TR :
o ’ i T A s
N A N e N T ‘
“l‘ = 2 ("") ( ¥ bl+ : )bN’-:t-{—,h (=12, sreeeeeen) (6) o
) B IG-_—O : : . : L ‘ . \ » e ¢
Furthgr \
\ N : ; N—#I - = - S R
Za, i = Z « (=l @
't = S TR

) The proof of this lemma has been given by Thlruvengadam a.nd J alswa,112 -
Similarly we have o ; ;

Lemma 2 ;. I_fao O veiie e a,’y‘fand'b'o e e e by are
two sequences such that e ’ Lo

¥, —Z( )azv—: (r_'-O,.],2....k~4.;V) ,{ - - (8)

j=r
then .
. . ) . N ) _ ’ . .
) . N—i+k v T \ . Y )
@, =z (—)* ( yE ) Utk (1=0,1.2,0..0008) . (9)
Further R A . ' I “ '
; N, N N ' ‘ : ‘
>, N—k SURE o
Z a,z o = Z o (l—)te b’y (10)
ey L k=0 . L ‘ : 4

If we define a random varibale € (which is the time mterval between two successive
- entries of the machines in the faeility when mterruptlons are allowed to occur) to be'a
. ‘comaplakion time’, then the d1str1but10n of Cis given by

Lemmad: ¥ - Prit< C‘gt-[-dt}——‘zj'(t)dt e f{ifg(l‘l)\w
and T 5] = [ e 'zg (dt -~ which is convergent
for - . Res) >4 then ‘ |

gy [s] = Sa [)\1 +s]+ 8, Is] (Sa(s)——Sa [)\1 + 3] R TE (“]2)
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Proof : It is easy to see that ' ‘
ST Y D Y - " A
VW) =¢ S)+f 80— ) 8 @—)dr (13)
Lohg R I S

~ For, in order that the completion time lies between ¢ and ¢ 4 dt, we should have either
 the service time of the machine lies between (t, t+4-dt) with no arrival of an interruption
upto time ¢ or the service time of the machine lies between (r, r 4= dr) with an arrival of
interrupton before time = and the service time of the interfiiption should lie between

(b, t—r-+-dt). Thus we get (13). Taking the Laplace transform of (13) we get (12).
. Remark—From (12), it is easy to see . :
o [t =8 N]) U <o 4i=12) .. '
Jt s @)dt=< L . (14).

0 ) if any 5 = '
» .

where | N = { ©8; () de ‘[72:],2]7»

’ FOR‘MU;ATIOAN OF‘M_EQUAT’IONS ) v
Following Keilson and Kooharion 13; and considering the tour of the server’s state
coordinates in the state phase space, we define the following densities for thé process:
Py (0,8) de(m=0,1,2, ..... ... N )—The probability that-at time ¢, there are ‘m’

machines waiting for service while the server is busy in clearing the inerrupption with the
elapsed service time lying between z and & da. -

Qn (zt) dz (m=1,2, ..... .. N) ;The\probability that. at time*f, there are ‘m’

machines in the system with the elapsed service time of a machine tinder service » lying
between x and & 4-d and the interruption Whicl_} arrived during the service period of the

machine is waiting. -

Ry (wf) dz (m=12,........ SR N)—The probability+hat at time #the system
is in the same state as in (2) except that no interruption is waiting. '
E, ({)—The probability that at time ¢, the server is idle.

The above state probabilities are mutually exclusive and exhaustive, They provide
the Markovian characterisation of the process. . ’

Let us assume that the steady state probability densities exist and denote them by
droping the argument ¢. Thus for example we have lim t->c0 Py, (z, t) = P, (). By
continuity arguments we have the following differential difference equations connecting
* the various state densities in steady state ‘

{"é?w’ + [N—m) & + 7, ()] }Pm (@)= (N—mt1) { Pui(a) (15)
{2 + 10— 2t @ 10 @) = O + Y X0 @ (10
-+ MR (2)

e

{5 P ) 4 1 @ YR 0) = (¥ —m 1) A R 1 @) (1)



& et . THIﬁU\'ENGADAM:Mac‘h:ine‘lnyerfgl‘énf{effﬁdblém oo, ‘ 81

and

B N}\a] E,o ~—~IR1 (:v)")za:dw-l—.f P, (w)’h(w)dm : xRt (183

The above equa.tlons ate to be solved sub]ect to the fc)llowmD bounda,fy condlttons

P (0) = f Qn+1 (w)na(x)dw-;_so mAlE ey r"Q ST a9
o Qm(0 '——'0 foralm - - S e e / @D

- m(0) ;fa Rm+1(w) 112( )dm—}—f Pm(a;) ’71($~)—dw “: “ - (22),\
M aNNE,

Ry(0) = JPN(xm() T e

Further let us mtroduce the followmg generatlng functlon of tﬁe above steady state proba.-

bilities . S B
{Z w“f %@ dw@«%f%ffw 1 e

~which is convergent in the entire o and ,8 planes,
STEADY STATE QUEUE LENGT‘E""/D'T‘sT'R"Ii:‘ﬁ‘;rION '

, The solution of the set of equations obtained ab0ve Wlllgw‘eus the steady state queue
length distribution. We prove that )

- Theorem: 1—If 7% < 0 (1= 12), then the g@nera,ting?ffunctionof the,sted'dy ‘state,,,
~ queue length distribution is given bv\ : . « : e

w0 T PR .
+ Nz—:z (l—oc) Bn 111 +/3(——~— +7o,,, ‘ )}] | ,‘(25)’
where cT . ‘ o S 1” § - |

B = [(1—8 ) =X mtp m+m (=S 0MY @6
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1—§mm S o
e e , +{2)
g | ( S xS \)
CBEEe L O "
| 1-F{ma) : K o
o O 9)
. 1"‘82['\14"7“2] T -

(28)

o | |
o fyntByr ﬁz — B ) ‘ o
«xwm?«s;{"""’sy;‘n 0y L. 5O Lo #0)

’ -311«+
Al if n=o
n—1

| Vo = < N L o N———]‘ 1 el
) ~}“Z‘(l )\G",“l ' +N;,\’Z ( 1 )_C'z— @n

. =0 : - e N I=o ,
(1B [02s]) + Fn Sy [0 Ag) 'ofn—l 2 S(N=1) . (32)
On Gn—l(l"‘ kn)+on—2(1'“ kn——l) ; ) -
[CN—z (1—ky— )] ifn=
. S Qifa=0 G
; | | N ;
ST ' ,( n )31 — ¥n Ca—1 (1“"7" )'—" Yn—1 Cn——2 (1—7%-—1) 7
) 3:‘ = On——l(]—kn ) + Cu—gp (I—Fn—1). e @3
d— Y1 Op—2 . o ’
- G (T—Fx—1) i =N
8 = i ’ 81 [(n——]) Az] Cife=2, LN (34
L 1 @fr.-: —1
G ={ { - Sy [l Ay -+ ?\1] o i . . - (39)
0 150k + A SR T
a0 iy
e { B ot otherwise . 7 (36) -
Oy Ogeonene O . - :

- Preef: —-Employmg the transforms

A, (w) _ z ( ! )pyfj f@)

j=n
Ned o

B;(w) Ve QN=) (w) N o ,(37‘)1,

j =ﬂl
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and ST e e R R e
b © = E ( Ryey @ st e

the equatlons (15) to (18) ean be wntten as.

{5__+ [nA2+,,1(x) ]I(A () = 0 (3;%) :

'f{——+[aa+n2(w)}3n<x>~h e
{—3; +[A1{+n&+nz(??)]}'~bn(m)?0 T

.-

D%+ Mg B = [ tx@n@ +I Byt (w) w@d W)
" The solutwn of the equatlons (38)t0 (40) are given by et

A,, (a;) A (O) exp {—-—n)\w:——j' “71 (@) dx} ) “(4-‘\2)1_

B, (’m),=-—~.b,~n (0)_(1\——3 Yepi—nde— fm@dast Uy

b @) =t (o>ewp{—n1+nx2]w——fw)dw} N ()}

Tn deriving (43) we have used (21). The bounda,ry GOHdlthIlS (19) to (23), on employmg
the above mentloned transforms, can be written as :

. AxO=TBri@m @a+NE W

40= [ B@+BoEmeat (J)AE 6
Ao<0)———f°Bo (w)ﬂz‘iﬁ)i?”%)‘:/Eb'/ DRI S PRI f(47>:\

yb ©) -—f [bn @ + b 0] mw)dw—:_() )Ms @

+ fA;; @n @i~ ) [Al + (-N"a L |
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and - | | | \
b 0) = f b @@ + f 4 @@ dﬂé-—»\l )

In denvmg (48) and (49) we have used (41)
Now substltutmg (44) in.(48), We get

by (0) {]“‘Sz ['\1+”)‘2 3= bn—-l (0) Sz [ A+ ( u—1 ) Aa]

+4. 0 SI[nAa]—— () [AI+NA2]_ s +(7)meEs
oo Jimma Y o
B 1 £t L) Y R,
i ‘—'SQ[AI] =1 1“‘82[)‘1+l)*z]
and d1v1dmg (50) by C'n both’ suies, we obtam -
| 4, (U)Sl[naz} (‘N)[XIQ-NAQ]E,,

fu=o0"

(51

bu(0)  bua(0)
O T TS

. SIS R i
1 _\ +N’\2 (n) = B 7]

+

071.—-1

where Cn is given by (35).

.Changmg R T | I 1, addmg all the equatlons, and substxtutihg the
- value of bo(o) from (49), we get ;

b (0) A ()8 [1A S | |

‘ I=0
where ¥n is given by (31).’
" Rearranging the termsin (52) we get

ba (0)  but ) An+i (0) S [(n—H) Az]
Cn = “Cwni C, | 7
"‘(7n+1 —mw)E - (54)
Changing n to (n+1), ............ (N-2), substltutmg the value of b,,...] (0) from (41) and
ﬁnally ‘equating the resultmg expressxon with (53), we obtam :

4 O8N
40ROy, g e

N

{=0"
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From (45 to 47) it is easy to get the following equa%mns '

S (0) =0 O ol —-—,,Sztxﬁ n&] o )A; B

o O el M~y By + =D % S

Ay (0) = ba—1 (0) {8, [(N—1) &g 5 Iy + (N—1) '\z]} + X Eo e
A, (0=, (0) {]_82[’\1]}+)‘1E R T 8 -

The equation (58) can be easily seen t0 be an- 1dent1ty
Substituting the necessary values from (53), one can easﬂy obtam from (66) and (57)

o A (o [z,\z] R '
on A 0) +ﬁn E - (59).
and ;
ay 4y (0) = Z‘fl—%}_‘g‘—[@*‘—] + By B, e '

1=0
where ., and ﬁ,, are given by (32) and(33) respectwely
Now, changing » to (n———l) in (59) and subtra,etmg the resultmg equatmn from (59), we
obtain : ,

A O =8 de O —B) B @

where 8% is given by (34). B TR

’ - Using the equaflon (55), the equatlon (60) can be written as o
By N ‘ ,
Ay (0) = —— :
N ( ) ON+1 : (62)
Dividing the equation (61) by 8, and rearrangmg the terms, 1f is easy to obtain
\ A, (0) o Apr (0) - ﬁn-}-l - B'n y )

: 6, < @ 56, E, * (63)
WhereQ is given by (36). Changing » to (n—'H) (N—l) addmg all the equatzons
and subsmtutmg the value of Ay (0) from (62), we get ST

Nei- © :
4, (0) ' By—i +7y 2 ﬂH—l <
6, E { Sy+1 6y . 8 91—1 ‘, } . (64)
I= (n4-1). . B

* Thus all the constants are expressed in terms of X,
’ Furthel"the value of E,, is determlned such that

{E +prm<w)dm+21 (90 ) + B ()]dx} AN )

2 mso m==l
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- The above equa.tioxi can be written as

{Eo + [A @+ B @) + b o) a) = i - (86)

0.

Subsmtutmg the necéssary values from the solutlon obtained above, we get K, and
is glven by (26). In the above, it may be noted that the existence of finite first moments’
of service time distributions is assumed. Using the Lemma given in this paper, the genera-
ting function of the steady state probabﬂlbleq can be written as . :

v (@ ) = B, +BZ 1—a> 7 A )i

m=0

Ne—m m |
+ z 0~ | | om @ + 8B (w)] ds. 60)
~m==0
This equatlon can be sxmphﬁed to (25) after substltutmg the solutlon obtained above.
This completes the proof of the theorem. ‘

Remark 1—The operational efficiency is defined as the proportion of time the operator
is busy either in clearing off the interruption or engaged in repair a,ctlvmes and is given

by : : -
0.E.=1—F, - : (68) -
The equatlon (68) can be computed with the help of the value given in (26).

Remark 2—If we define the random variable s (t) to be the number of machines not in
working order at time ¢ and

W) =P s @O=nt (=012.. N e

then assuming that the steady state probabﬂltles ™ where ht’m Tn (t) == 1y ) ex1sts, it
is easy to see that ~>00

v :
E, -]-}J‘ P, (x)dr iof n=o0

.= o : o (10)

j f [P,, () + Qn (@) 4 Rn (a;)] E otherwise |

| Defining E, n =l§ ( )mv__, o : - (1)
we get | - = , |

E, o,.=f[An(w)—-( N )An (@) + Ba (@) + b, ()]dx @

Substxtutmg necessary values'from’ Theorem 1 and usmg the lem,ma 1, we have the
followmg e SR , ‘,
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Theorem 2«-If % <oo, the queue length genera,bmg function of steady state probablhtms .
.18 given by

N : : N1 .
 Dmor = B (D) >
n=0 ) n=o
, where \
I — Yy 4+ By 1—58 [NA]
dv+1 - N),
i AL T
X, 9 — L+ R —22—
b ) TR R
1—-%. ‘ .
S m Ay :

and E’ is given by (26)
Further, the expected number of machines not in Workmg order is gwen by

znﬂn—_:N—-OlE —~N(Q+LE, ' (76)

" Tf we define the machine availability (M.4) to be the proportion of machmes in Workmg
order, then we have
N—Z, m (L+L)N+6

MA = - = ¥ ~ a | )

Remark 3—When }\1 = 0, the above resulfs reduce to active 1nterrupb10n case and when

)‘1 = Ay, the results of mdependent lnterrupﬁon case can be obtained.

Remark 4—The proportion of time the operator is engaged in clecring off the mterruptlon,
is given by

E.-(m):zf Py (@) do + Zf@ (w)dx [  (7"8)

m=0o o

which reduces to

B =E {xom+ pepyy (whe-Son ) § @

 STEADY STATE OCCUPATION TIME DISTRIBUTIONS

We can obtain the distribution of the following random variables by suitably augmen-
ting the times required for service. W1th the correspondmg state coordinates of the server
_ defined earlier.

(¢) 2, (t)—The occupatlon time of an interruption at tlme t 1. e, the time that an
interruption has to wait if it ]oms ab time ¢.

(75) 2, (t)—The occupatlon time. of a'machine at time ¢, 4. e. the time that a machine
will have to Walt if it joins at time #.: ’
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~ Thé above random variables evidently give the distribution of the-virtual waiting tjmé
. of an interruption and a machine respectively. :

Further let us define S ‘ ;
Wi B )IZ=PriZ< O)<Z+dZ} . G=12) - (80)

and aseume that S R
lim ’W,:‘ (Z,8) = Wi (2) =12 (81

exist irrespective of the initial conditions.
We shall prove that , \

| Theorem 3 — T T, (s) = f oy W, (2 dz @2)
whicill is"qonvergé;lt for Re ‘(s) > O; then | R
W) =E {;1+ X, 3:% + (6 — A}) o
A N 8y

oo (1=l SE—=K0 ), Sl S
~where E, and x, aré given by theorem 1. “
Proof:—Let us suppose that at time ¢ an interruption joins and the arrival of interrruption
process stops. The interruption which has joined at - time ¢ has to wait for a time (i) equal
to the unfinished portion of the service of an interruption if it joins when the interruption is
~under service or (ii) equal to the sum of the unfinished service tinie of a machine and the
service time of an interruption if it joins when the service of a machine is in process and an
interrruption is already waiting or (iii) equal to the unfinished service time of the machine
if it joins when the service of a machine is in progress. '
It is evident frofn the definition of the state coordinates givenvin/an‘. earlier section that
“the probability densities of the above events are P, (,t) @u (%,t) -and Ry (%,t) res-
pectively. Consequently we have : : S

N- o - . :
W 8 V/ o
- Wi (Z)=E, 3(Z) +Z J‘ P, (z)dx —i—l—%}(—w—;— T o (84)
) e . N| . ‘n=010_ ¥ S » -~ : | ‘ ;'
R + f @ (m)dw[f—i“%—s1(z—f)dr
E k =l 0o ' T oo : o : T

.

¥



BZY using‘ (37), (84) can be Written a8 - :

(Z) 'E, S(Z)—}—fA () % Jm JEOR

)

+f B,, (a;>(f S’(ﬂ”;"(’), SI(Z—;r)dr) (85)

S(a:+Z)
+fb() Sl +2) F(w)

* Taking the Lapla,ce transform, and substltutmg the necessary values from Theorem 1
we obtain (83) from (85) , ‘ ‘

i‘lus conipletes the proof of the theorem. ey

Tleorem 4——If
o Wz(s) —';f % e ey

wlnchh yct;)’m'rei'geﬁt for Re (s) > 0, ,then
. N—-'I 2 _l ¥ ‘ n’y . B s ‘ ""‘
o= 5. 4> @6 0=5Mue @)

N0

N=0

+z @ [8]) (1—-55 {s]) tn(s) } - s
where

l=o

(sz [xl+s]_«sg Bt )+S [s] ({5 fs]—'_Ea [dg] §+'§;D: +ﬂ~§=f"z+“"ﬂ)

Ay — 8
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oy, Sl —=SiTen] ~ 59y
and ¥, ¥, and C, aregivenin Theofgﬁlrl‘Whi]e & [s]is given by Lénnna 3.

Proof—The density of the-occupation time distribution W, (Z) and the server’s state
poordinates are connected by means of the following relation C ~

- N o Z . . -
S ' . -8 —+ 1) w*
mo=53@+ ) [rwa| 2L @ _ge
‘ N 3 ‘ | n=ozo (;* | . ) ‘
+Zf9,; (x)dwf e o e - 90)
o w=10 0 B : . , 4 - :

'oo

B . z g y ;
. A (n—1)* i
+ z f Ry, (2) dx f Vo (1) &5 - (Z—) dr,
=l 0 0

where Qr* (y) ie the r-fold convolution of g5(t) with itself. In (90)lwe h'avev"

3

Pr {71/;%} = jﬁVI (r)dr . | o (9.1)?

Pr {72 . u?,\—_—) fVa(T) dr , o ) V/ A(92)
| o :

where -}1 is the time required to finish the remaining ;pdrtibn of the service of the machine
and the service of the-interruption and 7, is the time required to finish" the remaining
portion of the service if the interruption is allowed to occur. Therefore, we have

Vi (u) = f —lzt(mp%;—- 81 (w—7) dr ‘ (93)
and v
= T — s " o P o—su S + ,
e = of e Md=F !e " —1%% (94)

Further we note that the distribution of 7, is that of the complétibn time distribution of
the machine, similar to one given'in Lemma 3. Here we have the density of the service

timé distrib_utién of the machine given By' ‘%L;‘({:;‘l ©-<p~ cm* : . a' meh %. There-

fore; the Laplace transform of the density, ¥, (u),is given by
" V@ =a+9+ 806 @ @—2 M+ @)
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. where

n (85 = f o S 'lg——-————z_(_wF—:(Z; du . - | (96)
: b -

It may be noted that in denvmg (90) we have used an argument similar to that
employed m (84). ,

Taking the Laplace transform and employing the results given in Lemmaﬂ 1 and 2,
we obtain (87) after a httle manipulation and using the results given in Theorem 1.

This completes the proof of the theorem.

‘ " DISCUSSION

In the above sections, we have investigated some aspects of maohme mterference
problem with postponable interruption. The time-dependent generating function of the
queue length distribution and occupation time distribution can also be obtained in the
transformed space.

This problem can also be generahsed to the case of finite number of priority units. In
order to compare the effect. of priority discipline, different operational parameters such as
mean queue length, idle probability etc. can be numerically computed for the preemptive
resume? as well as head-of-the-line case.. -

Throughout this paper, we have assumed. the existence of densities of the service time
distributions efe., but this is not a serious limitation of the study. For those distributions
which do not have densities, can be viewed as the linuiting form of the distributions for
which the densities exist or the operations of integration and differentiation performed in
this paper can be viewed in a generalised sense.
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