STABILITY OF ROCKET FLIGHT DURING BURNING
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Stability of the rocket-motion during burning is discussed taking into consideration gravity,
aerodynamic forces and torques. Conditions for stabilizing the rocket motion are investigated.
Analysis for injtial and final phases of burning is given separately. Stability regions of the
projected motions on two dimensional co-ordinate planes are obtained and thereby stability

region of theactual motion is derived. Stability diagrams illustrate statically and dynamically
stable and unstable regions.

NOMENCLATURE
== Cross-sectional area of the projectile
= The restoring moment coefficient
= Damping moment coefficient
= Drag coefficient
== Lift coefficient,
= Acceleration due to gravity
#= Acceleration produced by the jets alone

= Radius of gyration about the transverse axis of the rocket passing through she
centre of mass

= Jet damping torque coefficient

= Length of the projectile

= Rocket mass

== (Rna, Ryy ) = Linear malalignment

= Rocket velocity

= (v , vy ) = Deflection of the tangent to the trajectory
= (¢w , ¢y ) = Orientation angle

== Quadrant elevation of the launcher above the horizontal

= (Buw, Buy) = Angle between the rocket axis and the direction of the resultant
force.

= Density of air.

Srivastaval has investigated the stability of a projectile moving in a plane as well as

the stability criteria of projectile motion. The analysis was applicable to a rocket after
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‘burntout. During burning phase of the rocket its motion is affected by jet forces. . The
object of the present paper is to discuss the stability of the rocket flight during its burnmg
phase in three dimensional co-ordinate system. .Jet thrust is assumed to-be constant.
The problem is analysed for both phases of rocket burning ¢.e., initial and final. In the
initial phase rocket thrust is the dominant factor whereas in the final phase the velacity
also becomes equally important. °

EQUATIONS OF ROCKET MOTION DURING BURNING

Following Davis et al? the co-ordinate axes are chosen as shown in the Fig. 1. The
linear motion .of the rocket is referred to the fixed co-ordinate system Op Xo Yo Zo while
angular motion to the moving system OXYZ. All angles are represented by combination
of two angles measured as arcs on a uni sphere about the centre of gravity of the tocket,
For example ¢ = (¢z, ¢y ) where ¢ is the angle measured from the YZ—plane to_ the
point A along the arc of great circle through 4 and the X —axis, and ¢, is the angle

~measured from the XZ—plane to the point 4 along the arc of small cirole parallel to the
YZ—plane. If we take ¢ and » to bé small (a valid assuinption during burning phase of
the rocket) we can write

b= (e + HDE W
and ) ' .
v o= (w? 4 w2 @

By restricting ¢ and v to be small, the three dimensional problem of the rocket motion
during burning can be spht up into 2 sets of equations, where quantities in one set depend

. RANGE LINE

TS
Yo . Yo

Fig. 1~Location of the co-ordinate system.
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“aupon the X co-ordinate only and those in the other on the ¥ co-ordinate only. The eqiia-
<tions of motion corresponding to the projection of the actual three-dimensional space
‘motion on the vertical plane YZ passing through the launcher are given by = -

MV = m Z, <= m Gj — mg sin 6, -+ mg cos 8, 5y — 4 Cp pAV? _ " 3)
mV v, = m G ($, —vy) + m G Buy + mg cos 8o + mg sin Go vy + } C; pAV? ~
(¢y —wy) : ) ‘ 4
and

K2 gy = —m G Ruy— Kjp ¢y —3 C pAdIV ($y— vy )—3 C, pARV $, ~ (5)
“where ‘ ‘ |

. Kjp is the jet damping torque coefficient. The equations of motion that represent
the projection of actual space motion on the XZ plane will be given by (3) and the

S

following two equations:
mv;’ﬁ=mGj(¢w""’w)+mGjﬁMx +3C,pAV3 (¢y — v, ) (6)
m K2 §, = — mGj Ry —Kjp ¢x — 3 Cn pAIV? (e — vz ) — % Cf pAl?V:;x (7)
. STABILITY ANALYSIS OF PROJECTED MOTION ON YZ--
- | "~ PLANE ; ’
- From (3), (4) and (5) we can write the perturbation equations as
(m81.7+C'DpAV8V~mgc()sOoSvy='o ’ ’ ' : I

vy —CL pAV (dy — vy ) 18 Vobm V8 vy -+ [m Gj — mg sin 8, 13 0; pdV?)

CrmpdlV (by —vy) + 4 Cq pAP §y 13 V—h CrmpdIV? 8y + m K38, +

(Ejp +3Cq pABV )84y + 3 Cnm pAIV234y = o -
. Taking Laplace transformation
(mS--Cp pdV)8V —mgcos o 8vy = o0

Lo

[ml:y—‘ Cr pdAV (dy —vy )18V + mVS vy + (m@; — mg sinao—l—%o; pAV?)
vy —(m G+ 30 pAVA S ¢y =0

[CnpdlV (gy — v, ) + § Cy pAI2 ¢ ] 8V — § Cun pAIV? 8wy 4 mE2S? 8¢, (K

£ 1 C,y pABY) S8 gy + & CopAlV2 8 gy = o0 ©)
equations (9) can be put as ) » ,
A8 + 4, By o 57
Ay By 8+ By, | 021 . Bvy =0 |
Ay B,  Ou S+ Cu S Cyf 84y )

19)
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-where
TAp=m : " Bn=—-mgcosao
Agy = COmpdlV (dy—vy ) T le =—1Cn pAlV2 '
+3 Oq pAzz dy :
Cp = K,D + oq p ARV Cgs = } ompAzyz (11)

From (10) we obtain
Py St 4 P8B4 P82 PSS+ P, =0 Sy
and the coefficients are given by v »
Po =4y, By Cy
Pl = All ‘B 032 + All 'B22 031 + A12 B21 081
Py = Ay; (By Cgg+ By Cgp ) + Ayy ( By Oy + By Oy ) — A21 B;; Cy
‘ 'P3 = All (B22 038 —BSI 021 } + Aiz ('B21 33 + Bzz 082 ) - A21 Bll 032
Py = A1y (Byy Oy — Cyy Byy ) — Byy (Ay; Cg3 — Cyy Ay ) . 4 (13)“
The necessary conditions for stability of the rocket are _
P >0 r=01,....,4 - (14)

An addltlonal condltlon for the stablllty ‘of the rocket is obtained by ‘Test Funchon
method? :

C*—abec+a?d <0 (15)

where :
_ P, . Py o p, _ P, o
aq = .,PO 9b = '-‘Fo_“ y 6 = Po &nd.d’— PO (16)

conditions (14) and (15) together form the sufﬁment conditions for stability of the rocket
Condition (15) with the help of (16), can be written as s
- P2Py—- P P2P_—}-P1 P, <0 '(;17)
-INITIAL PHASE OF BURNING

Im’oml phase of burning is characterized by high value of rocket thrust compared to
rocket velocity and other parameters. Substituting values from (11) in (13) and retaining
highest powers of thrust we have :

Pio O
P mK2@



Servasrava & Sivex ¢ Stability of Roeket Flight 219

P, mGj(CppAVE? + Kjp-+ 3Oy pARV ) .

P, CppAVm Gy (Kjp + 3 Cq pARV) ‘ - (18

Pys mGj [lCDCmp?A2173+MgOOSOO{OmpAlV(qSy'—‘Vy)‘f‘%O
pAR ¢y } ]

substltutmg (18) in inequality (17 ) and retaining the highest power of m G, and
dropping nut the common factor m? G% we obtain

mE? O [} Cp p*A%IV3 + mg cos 8o pAIV (dy —wy )] <
Cp pAV { K%p + Kjp pavk=} + Cq { Kjp+ Cp (p4)* B V24§ Cp* (19)
(pAVPRE2—} (mEl)gpAcos o gy} + 1 Op (pAV P14 Cq2
we write the inequality in the form A
Ao Om < Ay + 4, C’q—I—A Cq? . (20)
Ao Cm = A, + A, Cq + 4, C 2 @1

The curve can be plotted giving stable and unstable regions. For this we assume

4, = 0.2 and 4y

— = 04
-4y ‘ 4, 4,

O = 0-1 4 0:2 Cg + 0-4 Cg?

Taking Cm as ordinate and C, as -abscissa,
curve I, in Fig. 2 represents the stability
dia-gram in Yz plane for the initial phase
of burning. For region above the curve
Iy, the rocket will be statically stable but
dynamically unstable whereas for region
sneaniaw  Delow the curve I, the rocket will be
PHMAETITEY both statically and dynamically stable.

STATICALLY STABLE
DYNAMICALLY UNSTABLF

FINAL PHASE OF BURNING

As propellant burns, rocket velocity
increases in magnitude and becomes a
dominant factor. Substituting values from
(11) in (13) and retaining the jet thrust term
, - .and highest - velocity - term for each of the
— , p coefficients of (12) we obtain - .

-

Fig. 2—Stability in YZ plane for initial phase. P> m3 V K2
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Py omyGiE*+ V2 (30, pAm* B+ Cp pAm* K>+ .6 pAm2 K> - .- o)
Py, 2 m2Gj (Cp pAVK? 4 K;p + } Cg pABRV ) + V3 (3} Cm m? pAl +
30y Co(pAd )2 m+ 3 Cp Cr (pA) mE®+ 3 m Cy Cy (pd )2)

Py o Cp pAV mGj (Kjp+ 3 C, PAPV)%V“‘(PA)Z‘VCD(O%M;F -
e 30 Op pAR) o A . \ 4
P, om Gy [1/2 CpCn (pA)? IVE + mg cos 6, { Cmp Al V (¢, —v, )

+ 120, pAPy }14H1ACo COn C1 (p4PIVE. . (32)

In order to obtain the stability inequaliby we substitute (22) in (17). To get a simplified
form of the resulting inequality use is made of the fact that only the thrust and velocity
terms are dominant in the final phase of burning. Therefore, retaining the highest order
terms with respect to thrust and velocity (here for the sake of definiteness we assume
that thrust is of the order of velocity cube) we get the inequality

%o Cm—' 0q Cm Oq — Oy Cq — g Oqz - Oy Cq3 223 < 0 (23)

where : : ‘ _
% =1/4Cp C; (pA)® V5 ms G2 IKE —1/2 Cp (pA)* V3 m’ G% 1K
— 1/2'01)2 (pA)® V5 mb G2 K4 : ' =
ay=1/2Cp (p 4)® V> ms G} l3vK2 . ’ ) (24) :
=1/20p% (p AP VEmS GPR K412 002 Cy (pA ) Vomb G52 Kb '
+12KjpCp (p AR V2m8 G 3 PR2+ 1/2C (p AR VS mS GRIE KL
+1/20; Cp(pA* V5 md Gy 1 K2 ‘
Uy =1/ACp(p AP VEmS GRUK® + 1/4 Cp Oy (pA)* Vo mb G2 14 K®
+31C (pA) Vimd G2 It K? .
% =1/8 Cp(pA)* Vomb GRS
o =Kjp (Cp)2 (p A2 VEm® GRES 4+ 1/4 Cy Cp (pA) V5 md Gp 12 K®
Let ‘ \ \ |
oo, =o'y € n=0,1,....5
where -~
£=0p(pd) V2mb Gy
Inequality (23) can be written as _
| «y Og + o'y O + o'y O + o'y

Cn < oy — oty O (25)-
Assuming
‘ 1 M’ oz’
= 00002, —2 = 1:02, —3- = 06
0 %o %y
ot o’

7— = 0°003 and — = 0-001
% %
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‘the equation’ corrésponding t6 the inequality (25).is given by

o 1:02 Cy: + 06 C2.+ 0.003 C3; + 0-001 o8
- T 1—-0020; (26)
Utilising (26), Cm. is plotted against Cq in Fig. 3 to give stability and instability regions
for the final phase of burning. = ' : ‘

Cn =

STABILITY OF THE PROJECTED MOTION ON THE XZ-PLANE

So far we have considered the projected motion of the actual three dimensional motion
on the YZ—plane. To analyse the stability of the projected motion on the XZ plane we
have to proceed with-the equations for projected motion on XZ plane exactly in the same
manner as has been done in case of projected YZ plane motion.  In XZ plane, X—axis
being horizontal, the gravity component will be only along Z—axis. The term mg cos 0, va
in (3) is very small compared to m G and hence it can be neglécted and (3) can be written as

mV = mZ, = mGj—mgsinf, —4Cp p A V? : @n

(27), (6) and (7) determine the projected motion on XZ plane and are independent of the
terms with Y suffix. ~ Hence the motion on XZ plane can be treated independent of the
motion on YZ plane. (6) and (7) can be obtained from (4) and (5) respectively by dropping
out from the latter gravity terms and changing the suffix ¥ into X and there is no contribu-
tion of mg sin 6, term in the perturbation equation. Hence we can obtain the results
of stability analysis for the XZ plane from those of stability analysis for the YZ plane
by dropping out from the latter gravity terms and changing the suffix Y into X.

~ Thus for initial phase of burning Py, Py, P, and Py will i’emain'invar'iar"lt.'whileiP; w1ll
be given by ) B R .
Py=4mGOp O gt ALV @
The stability inequality comes out to be - L
" 3 mK® O Op g2 A2 1V® < Cp pAV {K%p + Kjp Cp pA VE} + -
Cq {Kjp Cp (pAV )2 B + § Cp* (pAVP I K%}

+ 0 (pAVPBCE e

which;can. again be written as | ‘ ‘
DAy O < 4y + 4 Cf + 453 C% (30)" -

In (30) the value of 4, is less and that of A, greater than their values in inequality
(20). The values of 4, and 45 remain unchanged. Hence, for the cnrve

g 4, Cn = AJ, + Az Og“ + As 024 (31)
Let
Al/ — A2/ —0- A3/ — ‘ .48
/Ao ——012, /Ao—-O 26 and /Ao =0

(31) is represented by the curve I, in Fig. 2. The region above the curve I, is statically
stable but dynamically unstable whereas the region below the curve I, is both stati-
cally and dynamically stable. - SO ‘ .
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In final phase of burning P, P, , P, and

® Py come out to be the same as given by (22)
but P, becomes
Py=4m@; (CpCn p'A%1 V8)
" +3Cp Cu G (pAP 175 (32)
-0
% proraTeALY STAMY Unlike the case of initial phase of burning, the
- stability criterion for final phase of burning
in XZ plane remains the same as that in YZ
" ot e plane and is given by (23). Hence the curve
w in Fig. 3 represents the stability and instabi-
¢ lity regions for the projected motion on XZ
Wl and YZ plane both.
” STABILITY OF THREE
w DIMENSIONAL MOTION
I The three dimensional motion of the
® rocket is stable if its projected motions on the
© YZ and XZ planes both are stable. Thus
‘ for the initial phase of burning the curve I y
¢ E B s x o (Fig. 2) represents the stability and insta-

ot bility regions of the three dimensional motion

Fig. 3—Stability and unstablity regions in final phase, also because the tyo curves don’t intex:sect

' . : - - . - and the curve I, lies nearer to the abscissa.

For the final phase of burning, the curve of Fig. 3 represents the stability and instability

- regions for the three dimensional motion also. Hence the regions of stability and instability

of the three dimensional motion can be obtained by analysing those of the two dimensiorial

_projeeted motions. For initial phase of burning the analysis of the projected motion on

Yz plane is only required but for the final phase of burning any one of the projected motions
on YZ or XZ plane can be used. :

It is to be observed that stability regions for initial phase of burning are affected
by gravity whereas those for final phase of burning are unaffected. It can be physically
explained by the fact that in the latter phase of burning for small variation in p aero-
dynamic forces and torques become dominant compared to gravity effects and therefore
the latter have negligible effect on; the stability = regions, :
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