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This paper deals with the offect of thermal radiative transfer on the stability of a rotating fluid
sphere of constant density and heated within. The problem has been examined for two asymptotic
approximations of the radiative transfer equation. For the transparent case the variational
prinoiple for solving the relevant equations has been established by assuming the temperature
gradient B to be constant. It is observed that radiative transfer has a stabilising effect on ths
fluid motion.

Goody* was first to introduce the thermal radiative transfer effects in the classical
problem of Rayleigh? or Pellew & Southwell® in which they had studied the bebaviour
of a fluid enclosed between two parallel plates heated from below. Recently Khosla &
Murgait extended. the earlier works of Goody! and Chandrasekhar® for plane gecmetry
by studying the effect of radiative transfer on the thermalinstability when a Coriolis force
1s also acting.

Because of its astrophysical significance Chandrasekhar® studied the problem of the
onset of thermal instabllity in a rotating fluid sphere heated within for a specific set of
boundary conditicns. Later Bis:hopp? studied the sams problem by a method which
takes into account the full set of boundary cond'tions. '

Following the work of Khosla & Murgai on plane geometries, the work of Bisshopp
has been extended here to include the ccmbined. effects of radiative transfer and rotation
ou the thermal stability of an incompressible fluid sphere under Bisshopp’s assumptions
that the rotational flattening of the sphere is neglected and that the fluid motions are all
symmetrical about the axis of rotation. The problem has been examined for two
asymptotic cases of the radiative transfer equation namely when the fluide is optically
thin and when it is optically thick. The analysis is confined to the case when the
bounding surface is free. The temperatue gradient B has been assumed® to be constant
the case of transparent approximation. ’

In the opaque case calculation of the critical Rayleigh number reduces to changing
thermal diffusivity K into K (1-4x) whereas in the transparent case, the solution is more
complicated and we have confined our attention for first approximation only by setting
(1, 1) element of the resulting determinant equal to zero, The numerical results show
thiat radiative trans’er bas an inhibiting influence on the thermal instability of the fluid.

EQUATIONS OF THE PROBLEMS

Consider an incompressible fluid sphere of radius r, rotating with an angular velo-
city .o about the Z — axis and with a distribution of heat sources e which maintains
a radial temperature gradient in the fluid.
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The temperature aistribution inside the sphere is given by the energy equation for the
initial static case, ¢.e.

szTo"]'e;}"

where K is the thermal diffusivity, 7, is the temperature, @, the radiative heating per unit
volume and C), the specific heat per unit volume. :
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The solution of (1) is discussed for two asymptotic approximations of the radiative
transfer equation, namely when the fluid is optically thin and when it is optically thick®
The mean free path of radiation is 1., where & is the absorption coefficient. The two
cases correspond, respectively to kr, <<< or >>1. The radiative heating @, inthe two
cases is gien as

(—47kB kro<<1 - (2a)
¢ = 4= ' |
s VB kro>> 1 o (2D)

where B is the Prlgnkf function. The temperature of the outer surface has been assumed
. %o be zero and does not contribute to @, in ( 2a ). Using (2), equation (1) can be solved as
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and o is Stefan’s constant. .
In év,a.lua,ting the temperature distribution, the two constants of integration have been

determiﬁed from the condition that T, is zero at the surface and is finite at the centre.
TP has been assumed to be constant.

“Applying Béssinesq approximation i.e. allowing the variation of density only in the
external force the linearised equations of the problem may be written as

" :
divU =0 X (4)

e . -
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S =g\ )+l —yCulU+2QUXL (5
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R > -‘ _— -
‘where- 6, p, ¢ and U ave the small perturbations in temperature, pressure, radiative
heating and-velocity respectively; v is the kinematic viscosity and p, the density of the
fluid in the static case
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. 4m )
and 7 Yy = 3 vaoe

where (f is the gravitational constant and « the coefficient of volume expansion, .
MARGINAL STABILITY

~ Now ( —-f—:— ) can be élimihated, from (8) by taking its curl. Further we make use of
o . - i
the following expression® for a_solenoidal vector field as the superposition of a polmdal
and a toroidal field in terms of the two aznnuth 1ndep*ndent scalars U and V in the
spherical coordinates (7, p = cos 6, é)-

> 2 > JI—=p 8 . ®
. — 2 v - 2
U= 8;4[(1 ,u.)U] ; - (rU_)Io
—_— > S
+ra/(1—p2) VIg (7
The equations governing marginal stability are characterised by ——;t— = 0 . The
dimensionless forms of these will be
av 1 20 : :
APU—T —= =R —— - @
aU ' S ‘
Dy V+—5— =0 . ’ » 9)
(A —Az)ﬂ_rri[(l——p,)U] k<<l (108)
(%73 - .
s
9= 1— “z)U] kry >>1 10b)
Bab= 7 l+% on [( T (
: , 492 : ' :
where B = 2/3)' rd and T = V—Sg’ 1ot are the Rg.yleigh and Taylor -
numbers respectively; ’ . k
E 4 8 (L=—p?) 2% 4 &
L= r ¥ T TR W T
and '
& 2 o - (lomw) 2 % o -
Ds = FF + - % T e o T T e

are the five and three dimensional Laplacian operators for axisymmetrical function.
BOUNDARY CONDITIONS

Assuming a free surface atr = 1, the boundary conditions w111 be 3

9 vV 3 ‘
:Z(U;=0,—§§—=O, L4 Oatr—l . (11

U '—"0’ a‘ul : ar
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THE VARIATIONAL PRINCIPLE.

~ The values of R can be determined in terms of the parameter 7' with the help of a
variational principle, Multiplying (9) by U 7 (1— u?) dr du~ and integrating over
the five dimensional sphere, we get the following formula’ which provides the basis for
this method. : : :

1

1 .
: fﬁdr f(l——,ﬂ} [UA%U—'-TU (;;V)]du
R=01 1

1 &6
4 2 - 27

fr dr f(l u?) U ( - aM)dp

0 ~1 :
The solution of the problém requires the construction of a trial function involving several
arbitrary parameters. We will have to find the values of 6 and V for some assumed form-
of U and the chosen form must sagisfy the boundary eonditions. These conditions can be
met by functions generated as solutions by the equation. A

: AU =T (13)

Since radiation does not affect the boundary conditions of the problem and the form of (9)
in this case agrees with the non-radiative stability problem - studied by Bisshopp, we
can use the same general solution of (13) without any loss of generality for the radiative
case as well. So we may pus

12)

o3 3
U= 4 f (ajr) Gy w/ (14)
. n=0 j=1
where
In + 2 (i 1) I,y 3 Gnj T)
flam r) =f2 (ayr) = . (15)
I “n ™ St -% (Gnj) I,,,+_3_2, (%ng)
and a,; isthe jth root of
Jor 2 @) Lyd @
2 _ P . g (16)
T @ Ial @ S

3

C, arethe Gegenbater polynomials and Jn"'% and I "+—% are the Bessel functions
of order (n —|——g-—) for real and imaginary arguments. '

Now we shall solve (10) by making use of the above mentioned form of U.

By taking into account the identity

L ’ ‘ 1 88\ ,
T GemW o= (am (- om)

-~

and expression (14) , we can rewrité equation [10a] as ]
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1 99 & = : 32 - 82
(o= (1 B = ZAD> S du st r) &y uy
| | == o1

N

dz 3 ‘ 32 .
Since T (1—p2) Cp (0] = — (n+1) (n + 2) Cu ()
(18) can be written as -
0 "
1 ¢ | , 2 3
(=8 (F 2) == > > 1) (i 2) dag flo O G017
' . i n=0 je=1 - A

3 3

1 28 S 2,0
Let (7'— —3—};—- == anf ( Onj T) -+ an, g (anj 7') Cﬂ \V’)/r (20)
n=0 j=1 v :

be the particular solution of (19)

Jntap (Gnj7)  Inpap(anr)

where ¢ (o 7) =

I3z (o) Ioq 32 (0j;
and B,; and C,; are the constants to be determined. Substituting the valye of —:— _fi
: 2

from (20) in (19) and tsing the relevant relations? among the various functions used, we get

3 3

©

al 2 )

E z : |:an anj g (omg 7) + Onj “2njf(“nj r )]C” w\r
. ‘=0 51 A ‘

3

I . . o
30N C . ) 2 5 -
+ A Z Z [B”j J (@i 1) + Crj g ( aagr) ]ng (P-)/rz
' 0 3 ' ,
- 3 2 ( o
- Z tog [ (eag T) Co S @
where ¢y = (n+1) (n+2) Ay

Constants B,; and Cy; are determined from (21) by eomparing the coefficents of f (ay; 7:
and g («y; ) Substituting these in (20) we get

1 a6 _ ¥ - _ Co (@) (22
7— —-5—- ——2 . [Azf(a"jf)—‘azn.’g(dnj"')} AA. n, ~ ———"7.572_ : ,
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~The cbmplementary function will be given as

- S
Py ?

1 26 ‘ L Gk @)
T EO \ [Dn'1n+§—fkr) + B "Kn+-%—(>"7')]_—’173—/2&—'_ e

where D,, and E, are constants.

Since L -Z-?—- has no singularity at » = 0. therefore E, = 0.
r  op e

Thus the complete solution of (19) can be written as

o 0

L 3
1 a0 o Apj T / 3
n=o j=1 o r
+ DO DLyl ol [y e
D, is determined by the application of boundary condition —Zg— =0atr=1

In more abridged form (24) finally becomes )

1 26 = / ' o
v 7 z Z ni Sj (1) O )/r2 Jorkr, << 1 (25a)

i=1

Similarly the solution of 10 (b) will give the following expression for -;1— ._:;0;
0 3 o
Lo N T
T T L > 4rj SM r) Co () - / o forkr, >> 1 (255)

| ol I, 300
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(n—{—l)’n—l—) ‘
T:W o @)

and

o0

n=0 j=1
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Since (9) remains the same as in Bisshopp’s case, we may directly make use of the

expression for aTI; derived by him. : - R

-

Now in order to find the critical Rayleigh number, we minimise the right hand side of
(12) with respect to Ay and set the determinant of the resulting system of homogeneous
linear equations equal to zero. The required determinant is, therefore,

| Omn [abmr < mj | P2l mk> — R-<mj | FS|mk >— T <mj|FQ|mk > ]
— B2, n T <mk|FPnj > —8pn o0 T <mk|FR|nj>|=0 (28)
for kro<< 1 -
Replacing, S by 8* we shall get the corresponding determinant for the opaque case.

On comparison of the above determinant with that of Bisshopp’s case (i.e. a non
radiative case), we find that some of the elements here have been modified due to the
introduction of radiative heat transfer. These are detailed helow™:

1
2 1 2
(n;;b—!*)én—{— )J‘wh'FM(r}Snj(r)

o]

< nk|FS|nk> =

=TT (| g e ()
+(%>+_h3)2+(" 4oty ))‘ In+5/2()\) e 2(2n+3)m4nk

B 2(%+1)2(n+2)2[ pt

oy ]2 + ¢ (otnk ]21

2 adpy, — X Inyap ) S — At
[ o St (o) | o I'n 432 (k) ) ] :
— 202, , :
ok { ok + A Jug 3/2 ((%nk ) T Oczn(c S LI o 3/2 (oc,,k j (29)
, | 2 (n+1)(n+2)
%
and < nk|FS*nk> = fr dr Fyj(r) 8%, (r) o T3
2 (n+1)(n+2) [ [ r 9
= P 4 3y24
(T+x) (20 8) o [F10 Lo 1P 4 (f Lo}y
n? -+ Tn - 33/4 2"\'ocn) N
oZnx / T gO!nk : ] (30)
For deriving (29) we have used the following relation :
i | .
I, + 3/2 (A7) _ ( 2021 ) L, 52 (A) (2n + 3)e2,z
!?’d’)f( k" L+ 3/2 (A T\ ety — M A I, + 3/2 (A) + oty — A% -
Otk S + 372 (ot 4 Onk 1 "m + 3/2 Ok | (31:
L%k + A2 Iy 32 (k) o — A% Ly o3 (k) J )

A first approximation to the value of R is obtained by setting (1,1) element of the
- determinant (28) equal to zero. Thus we obtain
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wtar < 01}F201 > —T < 01|FQ[01 >

R = for kr, <<1 . 32)
< OLFR0L > o | ©2;
and for %r, >> 1, S is to be replaced by S* in (32).
) Taprr 1
VALUE OF E FOR DIFFERENT VALUES OF A& T
T
A 0 10° 10
10 2-0061 x 104 6-1459 x 10+¢ 4:3404 X 105
102 1-5182 x 10 ¢ 4-6513 x 108 32846 x 107
TaBLE 2
THE BATIO R/Ro ¥OR DIFFERENT VALUE OF A & T
T
A 0 103
10 o 6-4901 ' 6-17891
102 ) 4:9118 x 102 _ 4.9181 x 102

Table 1 indicates the values of R for A = 10 and 102 and T =0, 10® and 10* for the
transparent case. The values of the ratio R/R, have been given in Table 2, where R, is
the values of the critical Rayleigh number without radiation obtained by Bisshopp. The
calculations have been performed for the transparent case only. For the opaque case the
values of the Rayleigh number can easily be obtained from those given by Bisshopp by
multiplying them with (1+4x). It is quite apparent from Tables land2 that as Ais
increased from 10 to 102, Rayleigh number increases much faster, thus increasing the
stabilising effect on the disturbance of the fluid. : :
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