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Equations for one-dimensional radiation gas dynamics (RGD) have been derived. It is shown that
the Rosseland approximation, widely used in Astrophysics, is a particular case of the new set of
equations. The equation for small amplitude waves is also derived and Lick’s equation is found to
be a particular case of the present equation when velocity ‘¢’ of light in the medium tends to infinity.
In RGD there exist radiation induced waves travelling with velocities comparable to ‘c’ and these
waves are followed by modified gas-dynamic-waves. Also when radiation pressure is comparable to
gas pressure, we cannot neglect the time derivative in the radiative transfer equation, though it
comes with a factor 1/c. Many other interesting featurs of waves in RGD are discussed.

Stokesb 18 for the first time, considered the effect of radiation on sound waves in an
approximate manner. Recently attention has been drawn towards the radiative effects in
acoustic propagation by Prokofyev®2, Vincenti & Balawin?, Lick® and Moore®. The radia-
tive effects in the equilibrium and pulsation of stars have been wid:ly discussed by astro-
physicists 2nd a full discussion is available in Chandrasekhar’; Menzel, Bhatnagar & Sen®;
Rosseland® and 8. Fiiigge® and many others. The study of the effect of radiation on the
shock wave propagation started with Sachst, Z2I'dovich!2etc. and recently a large number
of papers have come on shock waves in radiating medium. But the whole discussion has
been mainly based on Rosseland approximation to radiative transfer equation, which is
valid when the medium is opaque. In this approximation the radiation energy density and
radiation pressure are replaced by their corresperding values in thermodynamic equili-
brium and thus become functions of temperature only. There is no doubt about the validity
(as shown in references 7 and 8) of Rosseland approximation for stellar structure problems
but its validity needs investigation for waves in RGD (Radiation Gas Dynamies), parti-
cularly in shock wave problems, where the variation of temperature with spatial coordi-
nates cannot be regarded to be small and the medium may be transparent.

Tt is also worth noticing that the time derivative in the radiative transfer equation has
always been neglected because it comes, with a factor 1/¢, where ¢ is the velocity of light
in the medium and it is very large quantity. But it changes the wave nature of the equations
and many important facts are lost. The expressions for radiation energy density and radias
tion stress tensor in terms of the specific intensity of radiation contain ¢ in denominators
and hence if these quantities are regarded comparable to the gas internal enorgy density

and gas pressure, ¢ cannot be taken to be infinite.

In the present paper we have tried to givea simple set of equations for ope—dirpension al
RGD based on Schuster-Schwarzehild method of dividing specific intensity —into two
groups. This corresponds to the Eddington approximation to radiative transfer equation.
The Rosseland approximation to radiative transfer equation comes as a particular case of
our equations. These equations clearly show the range of influence and domain of depen-
dence in RGD. The equation for small amplitude waves is derived and it is shown that the
equation discussed by Lick® is a particular case of it when ¢,->o00, We have obtained a
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solution for a signalling problem of our acoustic equation, valid for very short time. But this
is sufficient to show that there exist radiation induced waves travelling with velocities
comparable to ¢ and these waves are followed by modified gas-dynamic waves.

EQUATIONS OF RGD

We take a set of rectangular axes (2, #,, 7;) fixed in space and neglect viscosity and
molecular heat conduction everywhere. In RGD we come across radiation stress tensorpg i/
radiation energy density Er and radiation flux vector F; in addition to gas internal
energy Eq per unit mass, gas pressure Py, mass density p and velocity vector u; of the
fluid.pp 9 Eg and F; are connected with specific intensity I, of radiation”® by

ij 1
pR = f 1L ljde (1)
1
Ep = S fI dw (2)
-and »
F = f 11, dw ' 3)

where /; are direction cosines of I, de is.an element of solid angle and the integration is
taken over the whole solid angle round the point under consideration. Also we have

Pa
Eg—=—"__ | =RpT
6=, 0 Pe p )

where R is the gas constant. The equations of continuity, momentum and energy are
Fliigge'®. ’

ap ] .
ol + o, (pi ) =0 (5)
du.- a_pg EPR ij
o P @ o Py — ox; 9w )
and .
) d ER du; aF,; )
—— |E —_— ' ) : —
Y7 ( ¢+ p )+ (Pa 85 + pr*J; 22; + o =0 (M
where
“ d ) 9
: W =g T W a5

8;j are Kronecker deltasand P; is the body force per unit volume, We shall make the
assumption that the source function for radiation is ' -

. c . i )
= -~ T
| = — T )
so that the equation of radiative transfer is
1 al al . v ,
c. th ox; =e(B—D) ©

~ wherea is the volume absorption coefficient and c is the velocity of light in the medium. We

shall ta’}{e o to be constant. The equations (1) to (9) are sufficient for RGD (Radiation Gas
Dynamics) problems, o -
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~ Now we write the equatmns for one-dimensional RGD the motmn bemg parallel to

z;—axis and all flow and physical quantities beingindependent of wz and 5. Then the
expression

n1h becomes (pg + p"g ) By .
aw]_

We shall replace, hereafter, ll, prY, u;, Py, 2 and 1?’1 by ;:,_Cosﬂ Pus u, P,z and
F respectively. Then we have from (1) to (9)

(1’0 81.7 + pr )]

. .px’-“*% f Ip?de, - ‘ A‘ (10)
'ER;% f Tdw, ' ‘ (11)
F = fl,uiq; g | (12)
b i o=, R
%’;_M_“i +p%=o, (1)
-p(%+ua%)u'+%(pa+pa)=Pf’ | | .l15)
p (54w %)(EH%E)‘JF <p;+pk>%+%‘= 0. (o
B=2T (17)

and v
—01__ %f——l—-p. %,:a(Bwl). (18)

THE NEW SET OF EQUATION

The approx1mat10n, first introduced by -Schuster and Schwarzchild, consists in
assuming that the specific intensity at any point can be written
as I(w,t,p)__l+(w,t) forp >0

19)
=I_(@@t forp<o)

where 7. and 7_ are functions of z and ¢ only, Then from (10) to (12) be can wrlte

2
pr= —— ([4 +1_) | (20)
21r. . :
Br= —— (I4++1-) 7 , ] 1)

.and

F = n(ly—I_). . e



AY
188 . . Der. Sct. J., Vor. 17, Ocroper 1967

Multiplying (18) by 2msin 6 dfand 2 = cosfsin 6 df and integrating from 6 =0 te

0 = = we have

o 9 oF : S
_:“ 3 (1+;}+1_) g =4maB—2na(li41_) ' (23)
and o .
b 1 aF 2@ @

where (22) is used. Elimination of (I +1 _) between (20), (21), (23) and (24) gives

r 3 o2F B 6 oF
—_—— =) = - = I 2 F
( Py e o ) 4nma P + c G 3 a2 F, (25)
1 @oF opr
—C— P + [ o = —ua F (26)
and
Ep = 3pp (27)

The set cf equations (13) to (17) and (25) %o (27) contain nine equations involving nine
unknowns (P is taken to be known) and thus are sufficient to solve any problem of one- -
dimensional RGD provided correct initial and boundary conditions are given. Radiation
travels with velocity of light, whereas equation (25) shows that dzfit == 4 ¢//3 are two
characteristics of these equations. Thusitis true that though the front of any wave in
RGD travels with velocity ¢, our present approximation shows that the front of the main
disturbance travels with velocity ¢// 3~ This is due to the fact that emission from a
particle takes place in all directions. In the present paper, whenever we shall talk of .
waves moving with velocity ¢/4/3  we shall mean this main disturbance and it

should not be forgotten that the actual front of the wave moves with velicity c.

Rosseland approximation is a particular case of the Ppresent approximation and this
approximation is obtained by taking steady motion and neglecting ¢2F/z* in comparison
to 3«2 F in (25) and (26). Then - '

| S3?F = —4mo T (28)
and
d p;
—aF = ¢ dit . (29)

Elimination of F and integration give

47 i
Pr =5 B 4 constant,

But Pr =0 at T = 0and hence
4n

4o
Pr = EG—B:‘-?)E:— T4 ‘ (30
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and also g B 4 ;,
4 - ~ "
Bgp=—T. o 31)
Another approximation, namely transparent approximation, has also been derived
to the radiative transfer equation, Wang®. This is obtained by assuming ¢= oo and «
to be very small, so that from (25) -

*F 8B °
and integrating this we get (neglecting the constant of integration)
& —4waB (33)

Tt is doubtful whether the constant of integration can be neglected or not. A correct for-
mulation of transparent approximation is rederived by Murgai't for a plume surrounded
by an atmosphere at constant temperature.

SMALL AMPLITUDE LINEAR WAVES IN RGD

The importance of linear waves in basic understanding of corresponding non-linear
waves cannot be upder-estimated. It is quite clear from Whitham’s?® investigations
that the treatment of non-linear waves should start with a study of the corresponding
linearised theory of small perturbations to fix the broad qualitative features, and then
non-linear effects should>be built in this basic outline. We shall neglect the body force P
and deduce in this section the equation governing the linear waves in RGD. We assume
that there is a uniform equilibrium state characterised by

u=0: Pea = PGo, P— Pos T "—_—(:‘TO) F= 0, PR = PRo = % T407 ER = 3pRO (34)

The perturbations about this constant state are defined by -
w=u, p=po+r> P¢=Po+ P '\>

: (39)
F = F and pg = pro + P& J
so that . .
'T":——‘:T—‘To:TD (_'Z).G_,,p__)
Po Po | (36)
E'R = ER —- E[{o = 3])'13 J
From (14) and (16) we derive
2 ] Eg
(o o) (B )
_petpr (0, 0 ) or
p (b‘t T Pt ox =0 (37)

Substituting (35), (36) in equations (14), (16), (17),(25) to (27) and (37) we obtain up to
first order
ép’
ot

& L8 et pr)=0 39

A —

+ po o

(38)
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—aat—{(zfa + )+ By —4) vz }

71’60-1-4(7—‘1)1"130 ap o F _
— o : . Tor—1 preaat - (40)
o2 R 3 @F  160aT,® ( or'a Pao 6p')
. a2 2 o ~ Rp, o p, o
+;ﬁ—aF— +3a2 P (41)
1 oF 2V'r ‘ ’
T Ta T = — o (42)
From (39) it follows that there exists a potential function ¢ such that o
, o , o ,
7R J . )
%% o'¢
From (38) o = P g (44)

Substitution of (43), (44) in (40) to (42) and elimination of F’ and p’p from the three equd-
tions, thus obtained, give us - '

3 4 8 o E o , O 3P

o a2 "3 oz I\ 9z a7 ot | ot
[ a2 6 [ 92 92 9%
[ D &t cf(atz_“25 81:2) o

3y—+4 & g 8* &
+a {y——l)az atz-——a—wg} (g—tzma%a';g)qf']-f—[ ( 2+_(l1oc)

] ¢ '
(at2 “s 5ot ) ot ] =0 (#)
where
16 ot (7 — ].) Tos . PRo
% = =12 (v — ===,
a% o ( 1) we Pao (46)
a’p = % , 47)
¥ = ap (y ot ) _ - _— (48)
and ‘ ' ‘ : B
: ‘ Ba?a " ag
3Y a2 4 1 L 5
a23 =a2T . c az 3“(7_1) c (49)
2 —1 . ,
3 ( o 4 p ) ,

We also define the isentropic sound speed a, in a system ébntaining matter and radiation
by - L
r Péo +_pRo

P (50)

,.a2a —
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where . . :
- (4—3 B, (v—1) .
T=b+ 3 Thr1as) -6
and A
Pao
= » 52
Bo Peo +pro "( )

a, is the velocity of propagation of waves of small amplitude in RGD when flux F" is every-
where zero. Using (46) and (52) we can easily show that

a?y f 1—B8

g =V TEY—D) —p—, | (53)
@ _ _ (437 12 (D) B416 v—1) @, o0
ar i (ISR o-1} B+ =) B
L %5 - : : S -
g>1a, =1 N (55)

and

Lt @ . |
g0, = 301 o (6)

The left hand side of equation (45) is grouped by three square brackets. Each bracket
contains a homogeneous differential operator in « and ¢ and the orders of these operators
are five, four and three. If we denote these operators by P, P, and P, we can write (45)
as

Py + Pig + Py = 0. (67)
We shall define the solutions {#} satisfying P,¢=0, P, $=0 and Pyp=0 by fifth order
waves, fourth order waves and third order waves respectively. It. is evident that the
quantities vy p'g, 2’ , F’ satisfy the equation - '

S Pif + Pyf + Pyf =0 ‘ " 8)
but p’ satisfies . :
. A . :
‘T{Psf‘f‘sz‘i‘Paf}:U ' (69)

_ . oo & .
and hence we may have a discontinuity in ¢’ and 7" along the curve —(1790 =Qin z—1
plane, all other physical and flow parameters being continuous across it. This corresponds
to the contact discontinuity. : ‘

It can be shown that the operator P, can be writtcn as

_ { 3a,® 6a 82 X 52 ( o Cmy
P4"( e +T)(Taz'2'~°c1 'aw_z) ) (5%a)
where . .' 5
RSV IRV .y vr.rry R
v 2 . 2B] s e
and | »
4 a']_‘l(,&TzL 60;1'2 qlz N 67“ ar 2 ,
4y = 3(Y — 1) ac® + = 4 : tap,
3a,® 6ot
Bi= =g +-.
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o, and «, can be taken to be positive quantitiess satisfying a, >y,

a2
If the trms of order —6—2T be ncglected in comprison with terms of order unity we

can write

2 @ _“ilﬁ__l
. =T e+ 2 (59b)
and ,
a? = a’r , J ,
As ¢—>o0 in (10), (11), (45), (52) and (55) we have
P’R = E’R =0, B=la 025 = azs )

and

o3 5 o2 o2 a2 52
A o —a IR )
oa® ot ( o s 6‘902) $— 0 o ( ot YT o )¢

& ¢2 ) 3¢
2 _n2 —_1
+ 3 (a.z s T2 | o

The equation (60) is exactly the same as the acoustic equation discussed in detail by
Lick5, except that the constant 3 «® in third order operator is replaced by 2.
Lick’s equation is derived by a completely different method of approximate kernal
substitution and the difference in the constant is due to different methods of approach.
This agreement shows that Eddington’s approximation or Schuster and Schwarzschild
method of dividing specific intensity is extremely good. But the most important point to
note is that when we make ¢ tend to 0o, the nature of the equation completely changes and it
changes from a fully hyperbolic equation to a mixed hyperbolic and parabolic equation and
the two waves given by characsteritics ¢z/d! = 4 ¢/4/3 are lost. In our new set of equat-
jons these two determine the range of influence and domain of dependence. Itisalso evident
from (45) and 59a) that the fifth order, fourth order and third order waves are govern-
ed by equations which are hyperbolic with distinct characteristics and finite values of du/d:
along these characteristics. For the equation (45) we can prescribe five independent initial
values but for (60) we can prescribe only three. Though for signalling problem such a differ-
ence in, initial conditions does not give any trouble, the flow near the z-axis will be com-
pletely changed with such a difference in initial conditions for other types of problems.

— 0, | (60)

(45) can be writtcn as

3 & ¢ 8t o° 9 o¢ 1 ( 3u?
— —_—? 2y 2, =2
o ( an 3 o ) ( or — B gt ) at T o ( P +6“)
0 9* 9 2
= 2 g
X ( . 1 T ) ( e T YT TR ) ¢
. a? a & ., @ 8¢ (6 1)
+ 3 (oc + — e o ) e = 0 (61)
To study dispersicn relation we use nen-dimensicnal quantities
T = [ — o= e W - _ G . O
.af:--aw,t aart, c ar ,ul.—mT,as-— GT’%— ar
~ o - o
¢ = ¢ 3 g = —L (62)

ar ar
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so that equation (61) tramforms to

-, ) 24

( at2 Py
a )( o2 92 )—
2 — — —
( — % ox at2 ox? ¢
2

oo (14 ) (- ) 3

i(wt—Fka)

(=% 77— 53)
P at2 aw2

__1_(7‘
Tt U

Sllbétitutfng $= e in (63) we have
(Cy + 9Dy )k* — (Cyt+iDy) k2 + (C3+¢Dy) =0 (64)
where '
7. 2 .2
¢ c

— 2
Dl—as w

an

- ' 2 -
b= L1y ),
c ‘

The roots of this polynomial are of the form 4 %, + %,, where kyand kp are complex
quantities. The positive and negative signs before each value suggest the possib'lity of
propagation in positive or negative direction of #-axis with decreas'ng amplitude. In
the absence of radiation we get only one distinet mode of propagation and hence n RGD,
where two distinct modes of propagation are possible, one mode represents radiation
induced waves and the other represents modified gas- dynamlc waves,

If & = kg + ik then the velocity of propagatlon is ]— and the damping distance is

‘R
1
- 5 We choose B, = 05, y = 5/3 and Ty = 107, as the ese values cc\;rrespond to

3
the conditions in hot and massive stars. Then we obtan :
ap = 4-08 X 107 cm/fsec., a5 = 170, ¢ = 7-35 x 102~ « =

a; = 208,

C_ 424 x 100 R (65)
3 N

Table 1 gives distribution of ky = kg -+ © ky, by = Fgr -+ § Fgi, —— and
R
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gures 1 and 2 give the graphs of various quantities with 10g 10 @.

L

2R i .
TasLE-1
_ & ky
o B
kg ki elkip kg 5212. wlkyp
Lt 0 0 1-70 0 0 0
© -}0 o .
1077 5.02x10°°  _1.47x10718 1.70 2:56x10°  _2.56x10°  3.-91x1073
1t 5:92x107°0  _1:47x1077  1.70 8:11x107%  807x10% 1.23x10°}
1072 5:65x10°  _1.63x10° 1.7 1:01x107%  5.58x10°  9.90x 107!
107! 1-58x102  -1.45x1072 633 9:99x102  _£30x10° 1.00
1 4:82x1072  4.76x102  2-07x10 1-00 4-53x10°  1.00
10 1-00x10!  3.26x102 1.0 1-55x1070 _1.49x107!  6-45%10 !
10% 9:98x10'0  -2.83 1-00 5:80x107"  -3.98x107!  1.72x102
10 5:05x10% 101103 1-98 3-10x10 1 9.4 3-23x102
107 a-80x10%  _1.00x103  2.08 2-36x10 *  _1.6ax10 ! 4.24x10 2
® -1-08x10 3 2.08 ® ® 4-24x102
¢ 1]
) it
- i,
[V ] 1

’

Fig. 1— (s) log lO—klR Versus. log 10 o

(¢2) log 10 [[?151 Versus log 10 "y

(5ii) log 1 E‘:’ Versus log ;0 @
s 7

Fig. 2— (i) log 1070212 Versus log 10;

(i5) log 1o lk;il Versus log |, 0'.;

e -
(it4) log 4 > Versus log 10 @
7 S



PHOOLAN PRASAD : One Dimensional Smail Amplitude Waves 195

We notice from (65) and Table 1 that low frequency waves are third order waves
and high frequency waves are fifth order waves.

Signalling Problem :—The signalling problem which we are conmderlng is shghtly
different from that considered by Lick® and Moore®. An extremely good. qualitative picture
is given in Lick’s paper while Moore*, under the assumption of y nearly equal to one, has
given a complete history of velocity and temperture profiles, -

For time ¢t < 0, it is assumed here that the gas is at rest with temperature T,
pressure pgo -+ bro and density p, . For ¢ > 0 a constant velocity %’ = B and a
constant pressure p’q -+ p'r = p, € are imposed on the boundary z == 0. The solution is
sought for z > 0 and ¢ > 0. Thus our differential equation is (45) with the following
initial and boundary conditions :

At =0, ¢d=d=du=¢du = =0 Jorz >0 (66)
24
fort >0 (67)
24 _ i '
ot ~ T ¢
If a Laplace transform with respect to time is applied to equation (45) we obtain
5, Bt dg"‘ bt gt § = 8
1 gt - % + ¢ =0 (6 )
where
0 : L
¢=°fe—pt i | (69)
Y =oap+ af “ (70)

: o1
b = ( &)+ {5 + o)

[ 3y—4 a
+ 4(1+_7__i_ﬂ_7'_}a12]p2

02
bala at
+ ap? (3701.2 ER 16 + 3(}’_141)02 )Hp 48}
and ' _
2 ) ‘ a12 60( ; 3y —4 d12
b [{(7‘—1)02 + c }-1— y—1 e | P

' 2
+3 ( L e ) (1)
The solution of equation (68) finite for all positive values of z, can be found in the form

$ = dieye + 4y ey (73)

S 2 452 98 : .
2= ——-[ 2 ‘/(8*28 b %) ]% (74)
1

where

*Moore’s paper appeared after the completion of the present investigation, -
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A, and A, are found by using the values of $ and at x = 0, obtained from the
. : ¥

Lép[ace transforms of the boundary conditions (67). The resultris

DB+ PEAY, ¢ |
. 4, =. s Ay = H—Tr :
LETEm—) T e o (75)
The solution for small time is obtained, by the usual method of expansmns for large p. We
have for large p
i _ 3y—4 a2 ) 1
L[] (1)
71 - : 2 2 i | ‘r .
g s O as® :
1—3 >
c
o—ap® B
V3 z a® e .}L +0 ( P )
V= — ¢ p.—'\/3 ® (y—1)e 052 {
L 1—3 ol SR (M)
€
e o (2 s
.’41“ —_—— 1 . '\/E pz + ps ) ) B ( )
. = . e
and
€
4, = 1 — __E_ 72 + 0 ?3' ) ) (79)
05 -
. ’ 2 . A 2 2
For RGD, it follows from (46) that i SN finite and of order unity, % s —%T-g—

can be neglected in comparison with terms of order unity. If so we have for small ¢, the
first approximation

B — _‘15._‘ ) 2 __a®  a? —ar®
¢ = — : »\;:3," v e ag P ag 2 q.?
a5 ¢ -
€ 3 &L .
B— = 1 = ‘/3 pP—VEaz (80)
+ 2 €
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whence .
B — \/03 € m a12 .052 — aT2 .
¢_-— 1 v;.\(t_ a5 )e a5 2“52
05‘— c
B €
s v —VTas o
T \/g(t—w—*kc w)e foro <ot (1)
a T e
€
= ﬁ— g (t—ﬁm)e—vgmm fora,t<x<-——.__
1 3 ¢ 5
a ¢
[ 4
ct .
= 0 fO?‘ —;73:<

Since B and e are small quantities, ¢ is of second order i inpB, € and i But its denvatlves
contain first order terms and we have from (43), up to ﬁrst order in small quantities,

a? — ar?

Vie o’

g o= 1 B =T Zax "
a1 V3 .
o c
. o
- — 3 o
g B _Ahasm
1 _ Vs
- B — hd __A3azx
_--=—--’\/3 % ¢
¢c 1 V3 -
ag c
= 0
and
ﬁ — \/3 € 012 a52 —— aT2
P’ + P — C e a 2 a2
Po 1 8
27 [
—4/3az
X e ’

Jorz < ugt

(82)
-6t
for ot <z < v
ct
o ——=
Jfe Ve <"
€
z — A~ %
1 _v3
a5 ¢
Jor z < agt (83)
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€

— B— ag ?—-\/S—aw‘ SN . et
- 1 43 Jor ast-<< x < T3
3 e :
: ct
. = 0 fO’l‘ \/_ - <<

The solution of this problem for the equation (60) which is similar to the equation used
by Lick," can be obtained fom (81) to (83) by taking c-»00, in which case as->a,, Hence we
have from (81)

alz y—‘l
¢ = - t— — T e T2y ©
1 Gg ¢ s _'}'
a,
-+ _ﬂ_T/T:& te—\/3am forx<dst (84)
; o \ ’ , “

B—ela, ,, —a/3az

—_— "t e
1/a, ,

The solution (84) can be obtained also by proceeding with equation (60) without any

reference to solution (81). We make.the following conclusions from (81) to (84).

(V) Just after the start of disturbance at =0, the fifth order waves in (45) dominate and

Jor z > as t-

. ‘ o ¢ -
the disturbance propagates with characteristic speeds %'anu @s. But due to the presence

of lower order terms they are exponentially damped.

(1) When c is finite the waves can be divided into two groups. The first group consists of
radiation induced waves moving with velocities comparable to that of light in the medium.
The effect of radiation is primary for these waves and the changes in gas-oynamic variables
is secondary. The precursor radiation, as called by Lick® and Moore® is essentially
radiation induced wave. The second group consists of modified gas-dynamic wave and
the effect of radiation on these waves is secondary. In (8I) the radiation induced waves

and modified gas dynamic waves are given respectively by -

€
_f;z‘s__(t__@ag) e ~V3us
1 3 o
Tag ¢
and “

g _ Vie o L w wa

e S i (ot~ KA L

o1 13 @ : 3

e T e

(#5) The velocity of propagation of the front of modified gés dynamic waves is a; for
small t and th's is quite aifferent from, isentropic sqund speed as (see (53), (55), (56))
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C L : - S F  6g BF o
One will be tempted to drop,the terms ——— _8__2__ and — 2 in (25) and,

: : c 72 c o

1 oF

¢ .. &
to (45) and find the solutlon correspondmg to (81) we shall obtam

- In (26) because ¢ is large, but if we do so, from the equamon correspondmg

a? a? —ar?

é = -—-’—'8—5(::~ o )e_ s 24

Z.

€ 2 . L
B—— . e—\/3(.:“2+ 9_16_3‘):1;.. for x < a5t (85)

N

€ ' - 2 ’ ‘ »
—_— Q- f 2y Gl %
B a5 e——‘/3.(/oc2.+ = )w forhs‘t <:v

. . ' , 1
Comparing (81) and (85) we see that the damping distance \/ 5 ( . a3 a ) for
“ e
. >y :

radlatlon 1nduced waves in (85) is very much d.lﬂ'erent from that in (81) When ——; as- g‘xm;: ’
by (46) is ﬁ.mte for RGD ploblems ana thus the neglect of these terms, a.ﬂ'ects the solution
considerably, mainly in the value of M glven by (83). Thus When rad a.tlon )
’ 3 &F . 6x oF.
@ o n.d e

pressure and energy density are taken into accOunt, t_he negleét\of

1 ‘ .
.in (25) and vy TI:- in (26) will affect the solution cons_siderab]y._

GEN~EB—AL DISEUSSION OF SMALL AMPLITUDE WAVES IN RGD

From the investigations of . Whltha.m15 Lick® and Moore® we make the followmg
conclusions about the qualitative picture of waves governed by the equation (45).

For small time the fifth order waves dominate. The initial waves travel at two speeds
ag and —VCT , Where a;# a, and they are exponentially damped due to lower order terms,

After very long time the third order waves dominate. These waves travel now at isentropic
speed @, but they are diffuscd due to second and higher order terms. For someintermediate
time, the fourth order waves dominate. The waves travel at speeds o, and «, but these
speech are different from isothermal speed ar. Also the fourth order waves are diffused
due to the fifth order terms and are exponentially damped due to the third order terms,
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Both the fifth and the fourth order waves contain radiation induced waves and
modified gas-dynamic waves but only modified gas-dynamic waves are present in third
order waves. . ’ '

It is itaportant to note that not all waves of (45) are diffused or exponeptially,&amped.
For substituting ¢ = f (£), where { = wt — kz with arbitrary values of w and b, we
find that f satisfies a fifth order ordinary differential equation in € with constant coefficients.
Thus, given arbitrary frequency and wave number there exists wave forms, limited by

exponential functions, which can propagate with speed —;:— without change in shape
Courant & HilbertV.
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