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Cylindrical explosion in cold, homogeneous and rarefied atmosphere is studied in this
paper. For different values of v, the non-dimensional radius, ¢ is plotted against the
non-dimensional time S, and a comparison is made with the results obtained by consider-
ing the flow representable by simple snowplow. It is fouund that the rate of change of ¢
withr espect to S is more in the case of cylindrical explosion than in the spherical explo-
sion, whereas the variation of 7'/E with respect to (M/M —1)is same in the both cases.

Stuar:;* has studied the spherical explosions in cold, homogeneous and rarefied atmos-
pheres for which the Taylor’s solution? is not applicable. To describe the expansion of a
spherical shock in a rarefied atmosphere, Stuart has assumed that the flow is representable
by a snowplow model. Stuart’s study has been extended to cylindrical explosion in the
rarefied, homogeneous and cold atmosphere by us'ng the same model.

Tt is considered that the explosive mass is confined initially in a very thin eylinder of
infinite length. It is visualized that the medium is such that the mean free path of particles
outside the cylinder is large as compared to that of particles inside the cylinder for a suffi-
ciently long time even after the explosion. With the result, that after the explosion, the
particles outside the cylinder rush inside it adding to its mass. The expansion of the cylinder
is considered to be uniform and shape preserving throughout. This mode of expansion is
given a name ‘Snowplow model’. The addition in the mass of the cylinder goes on until the
cylinder becomes suffic.ently thick for the snowplow to continue. .

The thickness of the shock being of the order of a few mean free paths, no appreciable
amount of energy and momentum can be transferred in front of the cylinder through the
agency of the shock. From a hydrodyamical solution of an expanding cylinderical piston3,
the distance between the shock and piston is obtained as 0-07 R. Therefore the present ex-
plosion is studied only to a stage when the mean free path outside the cylinder is greater

than 0-07 R.

While considering the expansion to be based on snowplow model, the formation of
interior shocks inside the cylinder is neglected. Assuming the conservation of Kinetic ener-
gy— a property of simple snowplow, we obtain -

dR M, \t | CA
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My being the mass of the explosive per unit length of the cylinder, V, the initial surface
velocity and 2 the density of the medium under consideration.

Further it will be seen that in terms of the dimensionless radius ¢ and time S, (1)
becomes :
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This simple snowplow does not take into account the fact that a part of energy of exi)losion
is utilised in heating the atmosphere. From conservation of momentum and energy, a more
rigorous equation is obtained ‘

6+ g+ [o—nrorne | (5 ) = ®

y being the ratio of specific heats,

SNOWPLOW MODEL

Suppose that as a result‘df explsion, E (ergs) of energy has been liberated from M,
(gm) of the explosive contained in unit length of the clyinder. The medium outside the ex-
plosive mass is supposed to be rerefied, homogeneous and cold as stated before. In order
that this explosion may be of the type assumed in the snowplow model, the expansion

velocity must be a function of 7;— . Assuming

T dR
V= (%) | @

let us write ‘ »
f v dm = o MR? ()

where dim=¢ dv, « is } for a solid cylinder and 1 for a thin cylindrical shell. From (4) and
(B) is obtained

K (©)

T being the Kinetic energy per unit length of the cylinder. Also, the mass sucked inside the
cylinder can be written as

2
T=3} fV“’dm:%ocM(dR)

dm dR\ N p(r)
T 7 )P )i M

Integrating it over the surface of the cylinder per unit length, the rate of mass flow through
a unit length of the cylinder is obtained.

8 = =2nR(

The equation of motion for a line source can be written as

av; P

P being the Pressure.

Multiply (8) by «; taking into consideration the summation convention, and integrat-
ing it over dV, the equation becomes

a2 z; aP * ‘
J‘x.'—dtz—dm=——fxi —a@_—dV~ fm,; V,:SCZV

By using the substitution = R (#)y and integrating the L.H.S. of the above equation
between the limits =0, to =1, the integrant is
J’ d? ; oM @
x; —

g dm= TW(R”““M(

dR )2
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Similarly integrating the pressure term by parts (The surface integral being zero for:
an unconﬁned system) the 1ntegrantls

r

J @; av = —2XP AV = — 2 (y—1) U

where U is the internal energy per unit length of the cylmder.

From the conservation of energy is obtained

BT o
The source term becomes ST
- -> . d ) A e
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Making the transformation o
M, \b. [ M .
" 2np (y—1) E

M, bemg the mass of the exploswe and E the energy liberated, per unit length of the
cylinder.

The dimensionless equation is ‘"‘\

@+ ) -+ [<y~1> + o] (—55) =1

Performing the transformatlon (10) on (1) and putting y = 2, E=T, nre arrive at the
Eqn. (2). .

o

Studying sompe properties of (3) for small ¢, (3) can be written as

@=1) (gg) = 1'~ s 1)

On integration it becomes

. ’\ . v 1 % h ) .
o=(5=5)'s a2
- Thus the expansxon is linear in tlme in this case.

For 1arge q), (3) becomes

A 2ty s
1 P
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where

After integrating

Further integration gives

Thus the radius of the shock R, for large ¢ behaves as
| R= [ﬁ y—1

Obeying the familiar ¢ law4,
The kinetic energy per unit length of the cylinder is given in dimensionless form as

(16)

when ¢ = o, (11) and (15) give that initially%
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Fig. 1—Graph showing the behaviour of cylinderical

explosion,

7= ¢=Da+e(gE)

SYLINDRICAL EXPLOSION

SPHERIGAL EXPLOSION -

<

- (14)

=1, Therefore, the initial instant after the
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Fig, 2—Comparison of the cylindrical and spherical
explosion,
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explosion is that time when the interral energy of the explosion has been completely con-
verted into Kinetic energy but M still continues to be nearly equal to M,

For large ¢ (14) and (15) give

Comparing this result with that of Stuart for the expanding sphereit is concluded that same
amount of energy is used up in frictional heating of the atmosphere in the case of cylindrical
as well as spherical explosion. The solution of (3) can be obtained by numerical integration.
The results are plotted in Fig. 1. The simple snowplow based on (2)is also plotted here.
Also, it is found that the rate of increase of ¢ with respcet to S is more in the case of
cyhndmcal explosion than in the case of spherical explosion as is evident from Fig. 2.

M
M,

The graph between % and ( —_— 1) is plotted in Fig. 3 and itis founa identical

with the spherical case.

SAMPLE APPLICATION

- In order to understand the application of (3), consider a long rod of a high explosive
having mass 1 kg. per unit length, explodes at an altitude of 150 km. in the ea,rth
atmosphere

Here _
M, = 108 gram, B = 4 X 10% erg,

A —12
p= 10  gram/cm?

(N = 10" atom/cm3)
Taking ¥ = 1-4.

two limitations in our problem are (¢) the
mean free path outside the cylinder should
be greater than 0-07R and. (¢¢) the mean, free
path inside the cylinderisless than R. To.
understand the valioity of these limitations,
we have to know the relevant cross section,
which in general depends on ¥V and atomic
—15
specie. For simplicity, assuming o =10
cm?, the mean free1 path outside the cylin-
. deris A = (No) = l1km. Hencethe first
' cendition is valid upto R<<14 km.

N g

To know the mean free path inside the
Fig. 3—Yariation of the relaf{ve kinetic energ cyhnqer. consider .the densﬁ»y “EO l.)e um-
T/E with relative mass swept up (M/Mo—1).  form inside the cylinder so that it gives
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From this is obtained

{ R M, \?
(T)min=2Na( A )

4

Putting the given values the equation be-
-.comes -

B .
' — 1
wo ( A )min>

Thus the snowplow continues throughout
the expansion. But for masses per unit

R ON la‘cn)

o “‘—1‘;— ®y - A ‘ 7 Q — m —
& (,u;’ © 5 length of the rod less than M, = oo~ = 8

Fig. 4—Graph showing the history of chemical —3 R .
explosion at 150 Km, altitude in earth’s X 10 grams, —/\— . <1 and hence air

atmosphere, min

can pass through the cylinder after some critical time.

In the present case the decay of the internal energy U of the explosive is given by the

— 2y o
law® U~R where y = 2-77. The radius R of the solid cylindrical explosive
is a few “centimeters, whereas the radius ~of the cylinder of surrounding air having

’ : : .. T U
mass M, =103 gm. per unit length is 178 Km. Hence the condltlons—E, =1, 5= 0

initially, can be fulfilled.

After showing the application of (3) to the example, Fig. 4 is plotted by transforming
Fig. 1 to dimensional form. ’ -
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