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This paper (iscusses the flows immediately behind and in front of a two dimensional
unsteady curved shock wave in an ideal gas with heat addition. Method evolved by Thomas
has been followed to obtain formulasfor the determination of the gradients of velocity com-
ponents, pressure and density behind the shock when the flow in front is known.

JUMP CONDITIONS
The equations governing the flow are: ‘
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where G denotes any speed, v, any direction and
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such that @ va is taken as the velocity of propagation of t]:.é shock. The jump conditions! for
this case become
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Long brackets denote the difference in values of the quantity enclosed between the two
sides of the shock. Subscript ‘1’ has been used to denote quantities in front of the shock;
similarly quantities without subscripts denote values behind the shock. Quantity &
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which has been assumed to be constant?, is the heat emitted per unit mass by a hot plate
placed just in front of the shock. Summation convention and common notations of
tensor calculus, wherever necessary, have been used.

DIFFERENTIATION OF TI—IE SHOCK RELATIONS

By dlﬂ'erentlatmg the relations (4) (8) and (6) w.r.t. the arc length s (measured along
the shock), we get
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where A is the unit tangent vector to the shock and is so directed that the vectors Aw
form a right handed system. The quantities 4a, B and C are expressible as functions of
P> P1» Utn, G, ¥a, S and their derivatives®, A quantlty so expressed will be said to. have
been effectively calculated. From the set of six equations (1), (2), (8), (9), (10) and (11)
we determine the partial derivatives of the velocity componerits Ua, density p and pressure p
immediately behind the shock. For this, we first eliminate ,a to obtain the following
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From (14), (15) and (16) we can determine U% gond then from (12) and (13) p, goan be

found. (2) then yields the value of p To achieve this, we define a matrix || £,% || as
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done by Thomas?, such that
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The value of the determinant | E,@ | is easily seen to be (U, '— G where (U, — G) now
represents the normal component of the relative velocity 1mmed1ately behind the shock.

Agam, let us define quantities {ia as :
: ' g" def Cofactor of §;,@in | ;@ |

@ = [ €81




.
& VurMA : Flow Parameters Behind Shock Wave 147"

AT

So that . Vgll L2 U, — G ~U,—@
Wal=lgp )| = v,—¢ :
2 2 Uy — Gy A

- uU,—-6G¢  U,—@Q

Considering the expressions U, £, €8, we Lave
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where any quantity 4;; is defined by the quantities ifnmediately precéding it in the above
relations. We have '

Uap f fa = A5 . C R B (21)
From (21) and the matrix above, we find . ~ ‘ )
Ua,‘r = A; iJ lo' tir | - " F . (22)

Now, from the relat10ns(17) (18), and (19), the quant1t1es Au, Ay,and A, are effectively
calculated ; but since A,, is given in terms of Uogo;, by. (20), 1t still remains to be
determlned For this we write, as a consequence of (22). o :
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Substltutmg these values in (23) we get from (20); -.
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where U, is the tangential componéﬁt of the velocity along the shock line. Hence Ay
18 also found out. - (12) and (13) can be written in the form £,g é8 = a; where ¢, = C

D,
and ay = — -T)tﬁ- — p Uq,o -Hence,

Po=a; {'s ¥ = (25)
whence the quantities P,o are efﬁactively calculated. Fmallsr, from (2), the derivatives
P, a are calculated with the help of the equaf;ions : - .
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VALUE OF THE INVARIANTS ¢; AND A

For uniform flow in region 1, we have
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where % is the curvature of the shock at the point considered. Now (17)—(20), (24) and
(30)—(32) can be used to calculate the quantities a; and 4;; as follows :
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where o is the magnitude.of the relative velocity behind the shock. It can be easily{velr'iﬁed

that the above relations reduce to the results obtained by (¢) Thomas?in the case of sta-

tionary flow with no heat addition and (7¢) Kanwal® when the magnetic field is not taken
Dp

into account. Using the relations ¢; = C and ay= —- D ~onc . with U“. w- given

by (23) we have
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VARIATION OF]VELOCITY, DENSITY AND P’RESSURE ALONG
THE SHOCK
We have
8 . ,
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(89) gives the value of the:derivative-‘%. When the flow in” region 1 is uniform, the

expressions 4;,, a; and 4, in the above relations can be taken from (33) — (38).

REMARKS

The effect of heat addition seems to be prominent as appears from the expression of the
strength of the shock. If once this strength has a perceptible change, all the state vari-

ables and their differentials also undergo corresponding changes. In the absence of facilities

for numerical calculations, comparison with the case of ordinary fluids was not possible.
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