- ON THE CALCULATION OF OPTIMUM MASS DISTRIBUTION-OF
A MULTI-STAGE ROCKET VEHICLE
V. B. TAWAKLEY
Defence Science Laboratory, Delhi
(Received 8 June 1966) .
The effect of gravity on the optimum distribution of total required mags among the

various stages of a multiple stage rocket arranged in series has been considered by making
the payload ratio minimum so as to obtain a specified mission velocity at the end of
powered flight. The special case when the physical parameters for all the step-rockets
are each equal, has been discussed in detail, It has also been shown that if the mission
wquirement is to achieve a given all-burnt height, then" even at the expense of more
total initial mass no more total height is obtained than'in the case when the mission is
to have a given all-burnt velocity. Finally it is proved that in order to achieve a given
all-burnt velocity by arranging the stages in parallel results in'an increase in the total
initial mass compared to the case when they are arranged in series and the magnitude
of this increase depends upon the number -of stages.

In a multi-stage rocket, for a given ratio of the vehicle gross mass to payload mass
(defined as payload ratio), an infinite number of vehicle sizes and corresponding payloads
that will perform a particular mission can be had. This ratio is, therefore, an important
tool in the preliminary design for comparison purposes since it essentially represents the
efficiency of the vehicle configuration for the aesign mission. The main problem for the
designer of a multi-stage vehicle is, therefore, the minimisation of the payload ratio for a

specified mission,

Tnterest in the study of the staging optimization started with the analysis of the rela-
tive size of multi-stage vehicle presented by Summerfiela & Malinal, They obtained the
soluticn of the problem under the restricted conditions that the specific impulses and struc-
ture factors (defined as the ratio of the structure mass to the mass of the stage under consi-
deration) are constants and equal for each stag.. Vertregt® extended the solution to the
case when all the stages have unequal specific impulses. Goldsmith? further extended the
results to the case of a two-stage rocket having different specific impulses and structure
factors. Weisbera®, Hall & Zambelli® presented another technique of solution when both
specific impulses and structure factors may be different for each stage but do not vary
with step size. Colemann® went further and showed that a better optimization analysis
would be to include a scaling law for structure factor which accounts for its variation with
step size. Chase? presented an analysis where the structure mass of a stage is related lin-
early to propellant mass. This relation was determined by actual preliminary design studies
considering a given engine combination and a series of propellant leadings.

All these authors have either completely ignored the gravity or they have indicated
to make allowances for it by suitably modifying the specific mission velocity. But it is
always desirable to include this loss directly in the analysis than ignoring it all together or
making some approximate allowance for it. The effect of gravity losses in, the optimum dis~
tribution of total mass among the various stages by making the payload ratio minimum so
that a specified velocity is attained at the end of powered phase has been studied in this
paper. The main assumptions of the analysis are:

(2) the flight path is verticle,
() the rocket vehicle is so large that the retarding effect of aerodynamic resistance

may be neglected,
53
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(¢it) there is no coasting period between the discaraing of one stage and the firing
of the next stage, and

¥ (i) thrists, specific.impulses, structural factors and acceleratlon,s due ‘torgrh,vﬁy
are constants but different for each stage. - L

It has been shown that in case when all’the steps have constant physwa,l parameters,
1.e. have the same spemﬁc impulse; structurg factors and, weight to thrust ratm, the criterion
for optimum staging is the same as given by Summerfield when gravity is neglected (the
mass ratios must be the same for each step)..The analys1s has been carried out.te the case
when, the mission, reqiirement is to achieve a. given all-burnt height. The analysm shows
that even:at the: expense of more total Welght total height is not mcre than in' the case
when the mission is.to have a given all-burnt velocity. Further it has been shown that to
achieve a glven, ‘all-burnt: -velocity by arrangmg the rockets in, para.llel alwaysemeans an
increase ini the total weight than when they are arranged in series. The magnitude of this
increase depends upon b ‘rhe n.umber of stages ,

BASIC EQUATiONS

The primary factors. contrjbutmg $o the veloclty at the end of powered pha,se are:
payload mass, propellant mass, structure : mass, specific 1mpulse, thrust and duration of
burmng perlod Under the assumed condx’rlons, the velocity attained at all- burnb is glven

& ,1.!1. (G PR ¢ R L . ‘
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where o
SR .'. 7'6 ="—M__:]_L_{—;:—’cin:gi Iapi andf, ZF'/Mm ” (2) |

Now the payload ratlo is given by. L
M,; N St

X— i, II . : S e (3)
where w. Is the stage paylcad ratio deﬁned as
- '.93.7= My -
B ’ ~Zl4.m-i RS
and- My is the Qayload ass. ' .'-f::' .

) “In the absence cf a(‘tual data. it'is qurte reasonable to assume that the. structure m,ass
of a stage’is proport] onal to. ta,ke off [mass.of the stage i.e. ¢

where ¢; - is called the structure factor. Tt is not esqentla,l that the strueture faotgr@ ior the
individual stages have identical values. The attainable values for & .are governed by the
available: constiuctional material, the knowledge of structural Jes1gn and the ingenuity
of the des1gner of the vehicle.

g
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CASE WHEN STRUCTURE FACTORS ARE CONSTANT

* The problem consists of finding the minimum value of X 56 as to attait ""é”éf)%ciﬁed
mission, in this case, a specified all-humnt. velocity and then for a given payload mass to
find the aistribution of total mass among the varicus stgge,s.'?”’“l‘,@ug () igto be minimised
subject to condition that the vehicle attains a- prescribed velocity, at the end of the last
stage of power flight. Instead of minimising X the analysis ‘can be simplified by mini-
mising log X, subject to constraint (1). Following the method of Lagrange’s multiplier,
the augmented function to; be minimised is- ‘

o . S SRR ST
G=7, ———zcs log 7; +Z ~0tf‘.g_ T, " -+ ‘yz log %1 f_n. i )'k ()

i=1 i=1 L i=1
where y is the Lagrange. multiplier to be determined:

~ The expressions giving the required values of #; for minimum X are given by

~ f‘.' v !

. 1 "y foL , ;

(7) and the coﬁdition 1 détermine the (N+1) unkno%méi i.e. Nn'v; and the multipl\ier,\ .
(7) gives the optimum sizing relationships in terms of mass ratios of each step. This . can

be rewritten as:

. 01 (1 — 7~1€1) (f-lyTll;-— 1) : 02 (1__ 7‘2. e2) (g;Zi,zr;: . )=,',. :_;. .
=oy (1 —yyex) ( ?;N — 1) e .

which reduces to the well-known relation
ol —ne) =Gl = rne) ="\ =y (1 —1yexy) ,
_when the gravity terms are dropped out.

In the special case when all the parameters of the step rockets.are independent of ¢
(le.ci =ciy1,6 =€ 41, fi =fi+1 0 = 9«:+”1;’1 < <(N-—:‘i‘1:°))

Cy -

we have

o 9 N\ N A 9 3
Sl =1y €) (%— _— 1) = (1—r, €) (———-frz -«1)- cee=(1 v sN)( Ty 1)(9)
showing that the following can be had: i '
Case (i) All the mass ratios are equal to one another i.e, ‘
i L ==, N " (10)
- c R P ) oI »‘ o
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Case () m of the 7; ’s are equal to one another and the rest (N — ) ’s are equal
~ to one another, where m can have any value from 1 to (¥ — 1) such that if
7, and r,* represents the two sets then

71 7'1 = Gf : ) » (loa)

In the case when gravity is neglected the condition as deduced by Summerfield is
7’1"“‘72-—-)---.. —rN
- which is the same as (10) above.
In case (¢) condition (10) is used and from (1) we get

‘ L. r—1 .
Vs = NC log(rle . N ) (11)

which deterinines the mass ratio requiréd in ¢ach step for the specified all-burnt Velomty
Table 1 gives. the.values of 9‘1 for different values of Vb /NC and g/f

» TasLy 1
VALUES OF r; FOR. DIFFERENT VALURS OF ¥V, /[NC aAND glf

- B

VNG olf
: o o1 ... D2.. .03 0-4 05
0-4 1-492 1-546 1-609 1-685 1-777 . 1-887
0-8 2-223 2-857 2510 2-686 2-891 3124
1-2 : 3-820 8568 3-850 4-170 4-535 4-948
1-6 4-958 5873 5-846 6-378 6-977 7-648
TABLE 2

1

Yarves oF (X/X,) ¥ FOR mv:m VALUES OF V,/NC A¥D glf
FOR THREE VALUES OB € -

VyINC
g T
7 ¢ 04 08 1-2 1-6
‘1. . 05 . 1-039 1-067 1-091 1-116
. S 11 1-043 1-077 - 1:116 1-183
. 115 S U1 1-091 A © R
2 05 108 0 1.146 1198 1-265
-10 1-093 1-170 1-260 1-445
‘15 1-103 1-250 1-378 2465
»3 v, 05 1-141 . 1-239 1-323 - 1-492
T R 1) B . 1186 - 1-283 v 1-440 1,794
. : -156 1-173 1-346 1-684 7644
-4 -05 1-210 ° 1-349 1-473 1-628
-10 1-223 1420 1670 2-352
.15 1-260 . . 1-527 2145 . -
R -05 1-292 : 1-478 . 1-651 . 1-881
" 10 -~ 1-826 ‘ 1587 -0 - 1-971 3:318

» <15 1-369 1-759 2-902 -
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The relation between mass-ratio a,n.d payload ratio’in this case can be obtained from

(5) and (10) as _ o
_[n0— e)

Here it is cbserved that the values of 7 cannot be greater than 1fe. Also the relation
between all-burnt velocity and payload ratio is

‘ 1
1 Vs g (l—e@d—XM)

N NGO T

X i — NC_ S XFI

1—e(l—X¥) (13)

ItxX, represents the payload ratio when gravity is neglected then the values “of (X/X_ )I/¥
ate obtained from Table 2 for given values of ¥ [NC and g/f and three representative
values of e.

In case when the number-of stages is very large, then the value of the ratio of gross-
mass to payload mass in terms of speclﬁed all-burnt velocity is given by

Vs
— 60(1— €) (1 —g/f)

14)

Table 3 gives the values of X in this case for given, Values of Vy /C and g/f for three repre-
sentative values of e.

Tn case (4¢) condition ( 10a) is to give the optlmum staging and the value of r; is glven
by the re]atlon

Vs =0 log [(gf)m g —m e—g/f{N—"‘(?c + N;m)}] (15)

Also the payload ratio in terms of mass ratio is given by

x o _ gl m¥—2m1 — ¥
T— r¥ == (L —gff. 1r)"

TaBLE 3

(16)

" PAYLOAD BATIO IN CASE OF INFINITE STAGING FOR GIVEN VALUES OF Vb/C AND g/f FOR THRER
VALUES OF €

- 7 , glf
v,/C -1 2 -3 ' 4
=05 10 ‘15 =05 10 ‘15 |e=-05 10 *15- |@=+05 10 *15

0-5 1-794 1-854 1-922 1-931 2-003 2:086 2-121 2-211 2:317 2-404 2-524 2-666
1:0 3-218 - 3-437 3-694 3-729 4-012 4-351 4-498 4-889 5-368 5-779 6-371 7-102
1-5 5774 6-373 7-100 7-200 8-036 9:077 9-542 10-809 12-439 13-893 16-079 18-927
2:0 10-358 11-815 13-646 13:904 16-906 18-935 20-238 23-898 28-821 33-399 40-584 50-442
2:5 18-583 21-905 26-228 26-848 32-241 39-498 42-924 52-837°66-778 80-292 102-435 134427
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Now in what follows, if the symbol (") denotes the values corresponding to condltlon
(10), then for the same value of 7, in both the ca.ses (10) and (10a), we bave’from- (12)
and (16) ' g .

X[ iy

From (17) it is clear that we require more initial gross mass for the same payload by
using condition (10) than by usmg condltlon (lOa) prowded that

n> \/ B

[

(.

Further we see that

.'......V,J __C'm [log ,‘-—-merl( ef '}IT')]\
. , 2 )
and Vs’ > Vs only if

and this will be so only When L

S r’>\/ -

Therefore for a g1ven payload mass, more initial gross mass is quuu'ed and at the same time
get more velocity at the end. of powered flight by using condition (10) provided (18) is satis-
fied, ctherwise the case is opposite. Obviously the twc conditions (10) and (10a) are identical
ifr, = »\/nge At this point the common value of ¥V, and X are given by

I Vb, g \/_4_____ \/’57) L)

1 : L

9

Here it is seen that for given e, V3 [ONis maximum when

e _f__._(Ai / : (€ DR R I AR O R VIR
o= ) e/ (5 ) e

.—- Now-in, what. follows-it-will be shown. that theoon%or}(war) is-truedin-a limited sense
for optimum staging but has got the advantage that even for a nominal i increase in ‘totél
mass all-burnt velocity.is.obtained at a considerably.larger all-burnt height than is given by
condition (10). Sinee-both the eonditions are to ga¥e=the spemﬁed a.llwburnt velomty; from

(11) a,nd (15) it follows that T

and
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“If condition (10a) is to be a better optlmum staging criterion than' (10), (12) ands (16) gw
that ~ :
Y . ' rllN > ' (1 "N €)N
" ' T A= = (I—rFe)™

Therefore in order that condition (10a) is to have an edge over condition (10), then-(21),

(22)

(22) and (10a) must be simul.tanedusly satisfied. For the case m = —5—itis easy to show

from (22) that

. » 1‘1'2 - 7‘17’2
e _ << 1'% (ry + 1¥) — 2 ¥y (23)
But from (10a) and (21) Do .
. l 7' 12
0g —% T
e= iy o (24)
ryry ¥ 2 -
Ury 4 1r* — rd o
and therefore from (23) we should have ; . o
2 ”y 7.1'* '
log 1— "
¥ 1

and this cannot be possible. Thls shows that condition (10) which is the Summerﬁeld
crltenon is only true for optlmum stagmg But if we consider the example where

04, gff= 655, . Vi = 20000 ft/sec.,
ML = 1000 Ibs., 0= 8000 ft/sec and N =2, i

we see that we require about 2640 Ibs more by using condition (10a) but get the a.ll-burnt
velocity at a height greater by 113325 ft.

It is seen that in general equation (7) relates the parameter of each sta,ge ofa vehlcle for
calculating the optlmum sizing. But those equations in themselves are not sufficient since
we bave to attain a given mission, i.e. a specified velocltv at the end of powered ﬂlghf
Therefore we must solve (1) and (7) s1multane0usly for'r; ’s and y. This can be done as
follows :

(7) can be re-written as

aa ra-—[c.- R T P
oo

o (1425 ) - }u Vie (55— F—n «

2¢; €

r, =

1
A

 *Since g/f is to be less than unity it can be shown that for m=N/2 and for known values of #; and
A(H-—-1)

whereA GandH are the
G—1-

#;* the possible value of must besoastosatisfy G < '), <

arithmatic, geometric and harmonic means respectively of r; and *;,
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The question of sign is decided by the fact that when gravity terms are ignored the values of
r; should be posutlve and so we have to chocse the-positive sign. Thus

n= (a‘ - ’2c¢yei ) + \/‘(a; o ~_2;:2’_—5——) — )

where
_fizgies o, G
“=""dha ¥=ia
Therefore
. / 5 )
Vb“—‘zcilog (‘“ 2c.e¢)+\( 20”' )MH
$ =1

N . N
—z 1— - L . (26)
i=1 (“‘ 2 & )‘+' v{(d' 2; € ) bi .

This is a transcendental equaticn in one unknown y and can be solved easily by any of
the well-known metheds such as Newton—Rapheon s-method or the iterative method.
Having evaluated y and knowing the values of 7; ’s from (7) we can caloulate the masses
of the different stages for a given mass of the payload. As a sample example and for the
ease in calculation let us cons1der the followmg case of a two-stage rocket. -

Tuble 4 gives the mass dlstnbutlon in, the two stages and gives the figures both when
gravity terms are neglected as well as when it is accounted for,

Table 4 shows the sensitivity of the mass distribution in the two stages to the gravity
terms. We require an initial gross mass of about five times when gravity is accounted for
directly than when it is neglected all togetker. This shows that a more realistic picture of
the optimum staging can be had only when we consider the gravity losses also,

TABLE 4

Mass DISTRIBUTION IN VARIOUS STAGES FOR ZERO AND NON-ZERO GRAVITY

Mass distribution (in Ibs).

Oravity Gravity

included neglected
- Mass of first step Mo, y T ‘ 134535 27152
. Mass of propellant in first stage Mp, ‘ - : 100283 - 16898
Structure mass of first stage Ms, o 17698 2082
Mass of second step Mo, : S : 16554 7272
Ma.ss of propellent i in second stage Mp2 ' 11643 5272

Structure mass of second stage Ms, ' 2911 1318

s
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Now we discuss the mass distribution in various stages for minimupm paylosd ratio
when the constraint to be used is to obtain a specified height at all-bux?t. This height is
given by the expression . v

N ’ .

% =1 log 7; z S ook [ —1\2

hy = o L__{ g7 }__ gi [ ( T )
’ fi i Ty : — i \ = @1

=1

Therefore from (5) and (27), we havé to minimise the augmei;t:ed function

N ~ Ny
& 1 —1 73 log 7; gi ¢% ( rp —1)\2
=1 — i T —of (11
G=h RN R S g }+ 2 Z & ri )

o = . i=1
N
+4 > g B
The values of ; ’s giving ‘;h; 1ninimum value of X are givén by
% j:': r"n_—l - c; loi_” o =0 - i=1,2.,N (2)

These N equations together with (27) determineé the values of 7;’s and ¢. Knowing the values
of 7;’s we can calculate the masses of the various stages for a given payload mass. The
procedure to be followed for the soluticn can be as follows : :

From (28) we have s

¢’ g 1 —1 log 7; ) TS ( '

7; (1——-7','5;)( T Py T—rn )~ Fiz: 1——ri+1€'.+1)><

gi+1 7’,'+1-——*1 ‘logn+1 ) . )
— L1 LV —

v (ﬁ+1 741 1+ 741 11 < 1) (29)
Assume some value of 7; and iterate on ;4 till the above equation is satisfied. After
finding 7i+1 iterate on 7i+2 and so on. After having found all the values of 7;’s put those
values in (27) to test the fulfilment of the constraint. Tterate on 7; and repeat the process

- till the constraint is satisfied. '

This method is adopted for the two-stage missile whose data is given earlier. The mini-
mum initial gross mass and its distribution fcr a given all-burnt velocity have been already
found. With that distribution the all-burnt height is 563130 ft. In crder to compare the
two cases take this all-burnt height as cur mission requirement and find out the total
minimum mass required and also its mass break up in the two stages. The mass distribu-
tion in this case comes out to be as follows :

(Ibs.)
Mags of first stop ' o - 157215
Propellant mass in first stage I 107100
Structure mass in first stage - 18900
Mass of second step 31215
Propellant mass of second stage 23372

Structure mass of second stage 5843
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. For thisdistribution’ the -all-burnt velecity is 17230 ft/sec. which is less than. 17300-ft/sec
~as the iission velocity earlier. If it is compared with Table 4, it is noticed that more
initial gross mass is required in this case and still gct less all-burnt velceity -and so also
less total height. This shows that, even at the expanse of having more weight We are not
getting mére hieight-than in the earlier case.Hence 1t is alwaysadvisable to optimise the all-

s,

burnt velocity for cpbimum staging. -

CASE WHEN STRUCTURE FACTOR IS VARIABLE

As stated earlier Colemal; ‘]Sf)i’nted out the utility of including a scaling law for structure

factor'which agcousits for its variation with step size. Chase took onesuch relation as
SR ) ,\;‘,"i& Y Mg=4; Mp+B . . © o (30)

The coefficients 4; ’s and B; ’s are determined by preliminary design studies for each step
corresponding to the propellants and thrust levels under copsideration. Chase’s analysis is
very cumbersome and does not give any explicit relationships giving the optimum conai-
tions. Following the above relation (30) the analysis is carried out in details and those condi-
tions are obtained explicitly. Since--

, M= (Myi— Moi 4 1) — M @
Frosh (30yand (1), webave ™ .~ . .
v gt o (Mo— Mo 1) — B e
Therefore : - !
' = Moi(1+ 4;) - a (14 4i) "i33)
) My A; + Mot Biw 2 A.:'-{—'“l—l—k MBi""-‘ S
Lo - Mg 41 -
- . ,»‘/ st ; __1___‘ 3 Bi o
.tbi _ G Mp,- - & Coo ) Mm +1 (34)
o Mo o (14 4i) ;i T
- Now the following two cases are discussed : o .
(¢) when the’ total initial mass is given
. (4%) when the payload mass is given.
ﬂC’asé r('é)‘Th this case, since 4 o
' Myt1= __'_Jllﬂ_
=1

therefore all-burnt velocity is given by
N

sl . N
AT 2z (1 4; ) crleg gyt
Vo =zcilog B 3 = Z———‘———

i . ¢ E -7 1 Ai, .
{ i=1 % 4i +1+ M, ,f__“’k a;wi:——,-ila' (+ . )

. 1

Ol LS T 1 |
e ot B
o : x —1— —7— YT oy

; _,;tMu.I;ﬁ,;' Bl L0

ksl @)
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W ; -

¢,

We ha.ve to mmlmlsmg log X ie. Zlog & sul’eject to condmon (35) Followmg ﬂae

\ fa=l /

ugsual prmmple of Lagrenge 8 multlpher we have the rqu,lred conditions as

\‘“'/ gg 0.' . . ]“v Oi + O f""—]_ 2 N

v rE——— —— e+ o =, ci=12,...... ,
pe 1+4:7) R - T e el
: Oh(“f"o) Z; CU;AZ‘F I
S ' o kel

OI'F"

N [ R Y [ g ’
Op | (IH4 ) @ w; A1+ B; ﬁ ok - ai—g (1 + Az—-l) i1

poge | b s
vy A 14 B n - - 2<@< N (36)

In order tosolve (36) first choose some approprlate value of z;_; and 1terate on ;. After
having found «;_; and z; , iterate on ;-5 7and se- on. Having: found.all the ~va1ues -of
Ty, pUb in (35) to satisfy the constraint. After knong all the values of Tirs, the
individual masses of the different sta,ges are found out.: " i

If the conditions (36) are expressed n terms of 74 and € 1t is observed that the modi-
ﬁed condltlons are .

G (e L )G N
= <1+A>‘1 s 1’(, P 1) =) 04y 1, )( r‘? ,~-71).»—»

((1-eN)Ozv1—}—sz) (1—ry GN)( ?Nl" )(37)

B In the speclal case when the different physical parameters (i.e. 4;, B .0, e,, g9:/a;) are
mdependent of 4, the same conditions as (10) and ( lOa) are obtained.

“Case (15) — In this case
’ N

Moita =Mﬂnx,; N
PR o . S =il . . - - i , -
therefore all-burnt velocity is expressed as -
'/ B BT
y B N AR Ml“ﬂxk ]
Vi= D> C; log % (144 ) L N AY k=it1
L B (T N T L @ (14 Py
f=1 x A;+ 1+ Ji T oy =1 1 .
) kil . (39)
and the conditions corresponding to. (36) are = : .7, N LA 4
' Oi ( B‘ -#) ( gi 1 . . 2
» My, IYN oy (1+4;) = -

k=il

1
A
L
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By 1 ( Gi—t1 1 1 "
=Cia[1+ I ; — .]
M, ¥ (1L A4- - : 7 |
( Lkn. 24 ) | it (I di1 ) 2 21 A+ I_I_liﬂ;. Tl‘“ I
ot l ’ ) o II Tg
L ’ B k=t
212N (40)

Applying the usual iteration technique to solve these equations to get the values of iy,
which also satisfy the given constraint (39). Here again if the conditions (40) are expressed

in terms of 7;;we have

c 4 g9 1 _ G g 1
ey e et ey e {2 -1

o 7y
- Cy . g 1
B I
Also in the special case when C;=C;t1,4;=4;, ,% ;%1"—11— I<ig(V—1)}
o & i+
the following two conditions are obtamed : . ‘ (42)
Condition () 7, ="Ty= ...0ovren. =ry
Condition (1) mrys are equal and (N—m) 1%; s are equal such that
TiT*i=(1+Z)T ‘ (42a)

CASE OF PARALLEL STAGING

Another device of staging rockets consists in arranging themin parallel instead of in
series as done above. In this case all the engines are used simultaneously to give their full
thrusts from the very beginning, instead of being fired in succession. Quite often parallel
staging is proposed in order to achieve better performance than is obtained with series
staging. Here again the total ‘payload ratio is the product of the payload ratios of the
individual stages, i.e. ‘

N
X = I @; ‘ (43)
i=1
It is assumed here that the engine weight of any stage is proportional to the maximum thrust
of the engine, Thus if ¥, is the total thrust in any stage then the engine weight is given by

o ’
My = )\,' (“i —, w+1 )Moi (44)

i

We define another ratio as

Msi
mo= 31, (45)
since ~ : .
v Myu= Mp+ Mg+ My + Myt (46)
Therefore from (44), (45), and (46), we have ,
(Mo — Mo +1) — (w — o;jl )r\.- Mo 47

Myi= 14-p
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Now in this case also the all-burnt veloci’cy’ is

B O g r— 1
Vs = ZO' log ri —_Z T on ~ (48)

j=1 =1

where \ ' ,
2 (14 pi ) - o (1+p )
1+p 2 + (oce %41 )Ai‘ % T (=N )t (oA )
: 71 .

1y =

Here again (43) is to be minimised in order to achieve a given all-burnt veloclty given by
(48). Following the usual Lagrangian method, we have

00 gi 1—X o4 . ) C; (1_‘At i+ 1))
o (14 )z (I—X 1)+ (ps + A& o)
where ¢ is the Lagrangian multiplier,

+é=0 (49)

Since for the Nthstage ayii= O, wehave
Cygn 1 . Cy
oy  (A+pn)ey 142y (pv + Avow)
Therefore from (49) and (50), we obtain »
C; (1— X &) G 1=\ g

+é=0 (50)

Q=X wir)+ o (s Fho) o (A ps )z
Cy _ Cngy 1 _ (51)
1+ 2y (pyv+ Avow) N (I4+pn) zx ‘
i=12,....... ey (N—1)

If we express this condition in terms of mass ratio 7; we can simplify it as
9i 1 i+ Ao ) o (gzv ) ( 1 ;&N+z\zva£1v)
. —_— ——————— = —_ = A e
¢ ( w ) ( i 1+ pi Ve ) Unv ™ Ty
t=12...... , (N —1) (52)
These equations can be solved for different Fi by the well-knowh iteration techmque and

knowing all the values of 7y the minimum initial gross mass as well as its dlstrlbutlon in
the various stages are known.

Here again, as earlier, we observe that in the special case when-all the parameters

Ap Bis Ji and C,; are the same for each stage we have.
o -

Condition (1) ry=ry==........ =ry . (63)
Condition (i7) mrp, are equal and (N—m) r*ps are equal such that
Ti 7’; = 9 1 + L

o bt Aa (53a)
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and as earlier for the case of series staging Vit can also be shown’ here that condition (53) is
. true for optimum staging. In this specia} case the total payload ratio is expressed by
[ ri(l—Aa) r\,lw -

(1+M)—T. i) | T

Also (12) gives the total payload ratio required to achieve the same all- burnt velocity when_
the different stages are arranged inseries. Therefore from (12) and (54), we have

oo [(1’—— Aoc)X : JI/N (L -—-)\oc) Q—re (55)

X = (54)

X {(1+.u)~7‘(#+?\°€)} T—9

Usmg (4) a.nd (45) this can-be re- wntten as e ‘
(1— ) X]UN a—ma—m- . .
X' ] (1~«re)—~'r/\oc 1—e - o

But from (44) Ae <1 and so for the same payload to achieve the same all- burnt veloclty
we require less mass in the case of parallel stagmg only if SR PRSI S
—1/N 1N

I<r<l—(1-— Aoc) e—}—)\oc(l—e)—e(l—" )«oc)

which is contradictory to the fact, Hence there is no distinct advantage in Wegght saving in
the case when the different stages are arranged in para]lel )
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