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An analytic solution of the energy equation is obtained for a non-isothermal dise rotating
in an incompressible fluid at rest neglecting the viscous dissipation. Initially the disc and
the fluid are at a common temperature. Without altering the velocity, the disc temperature
is then changed and maintained at at tmperature varying according to the power law of

radial distance. Expressions for temperature distribution in the fluid for large-and small
%imes have been evaluated. )

~ The flow, induced by a disc rotating in an incompressible fluid at rest, was frostconsi-
dered by Von Karman! and later by Cochran2. The associated heat transfer problem,
with the disc maintained at a constant temperature, was studied by Millisaps & Pohlhausens.
Morgan & Warner* obtained an approximate solution both for constant and arbitrary
radial plate temperatures, using Lighthill’s’ approximation in which the convection
velocity profile was approximated by its linear form. Recently, the problem in its
steady state has received considerable attention and the solutions have been obtained
under less restrictive conditions. In a recent work on the thermal boundary layer on a
flat plate. Riley® has suggested that for sufficiently small values of time the thickness of
the thermal boundary layer is small irrespective of the values of Prandtl number
and the convection is affected by the velocity components near the wall which should
therefore be replaced by their values near the wall. For solutions valid for large times
Riley has shown that the departures from steady state are maximum near the wall and-
therefore near the steady state. The velocity components are again réplaced by their
values near the wall. In this paper we follow Riley’s approach to discuss the transient
thermal boundary layer on a rotating dise. Initially the disc and the surrounding in-
compressible fluid are assumed to be at a common temperature such that there exists only
the usual velocity boundary layer and no thermal boundary layer. The thermal boundary
layer appears when the disc temperature is rajsed to a temperature varying with radius
in a power law. It is assumed that the effect of increase in disc temperature on the density
of the fluid is negligible and the consequent effect on already established boundary layer
can also be neglected. An analytic solution of the energy equation for small values of

time has been obtained and it has been shown that steady state is approached as an
exponential decay. ‘

PROBLEM

The physical model is that of a large disc in the plane z = 0 rotating, in an incompres-
sible viscous fluid at rest, around the axis r = 0 with angular velocity w. Initially the
disc and the fluid are at common temperature T . At time ¢ = 0 the temperature of the
disc is changed to T, = T', +-nr™ where n and m are constants. Taking into consideration
the boundary layer approximations, axial symmetry and neglecting the viscous dissipa-
tion the energy equation for such a system may be written in cylindrical coordinates as
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Here v and w respectively are the radial and axial components of velocity and
k is the thermal diffusivity assumed to be constant, and is of order (37,2 where 8r is the
thickness of thermal boundary layer.

Boundary and initial conditions are

% =0 w=10" 2= 0
U = 2 = 0
T=T, =0 z> 0 (2)
T-_—Tw:Tao-l-m-m t>0 zZ= 00
T->T, ‘ z —> 00
Introducing the transformations \
z=d:’ t, u=reoF() w=\/;5H(§).] .
e 1 @)
t = and ——2— =0(¢
| /e T, —T, by
where ¢, F, H, = and 0 are dimensionless variables, equation (1) .-_ - -
becomes ‘
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where o = wv/k is the Prandtl number. In the initial stages of growth of thermal
boundary layer when the effects of thermal diffusion are important we define a new
independent variable

- 2z _ ¢ ¢ \%
v =1 (ke)s — 2 ( T )
~ The energy équaﬁon (4) ndw " becomes :
20
-—85_2——_1_2}[ 01') 25}————47Fm0—4r o =0 (5) |
The boundary and initial conditions are accordingly transformed to
F=0 . H=0 : §=0
F-‘—“-O‘ ) §=QQ"""“"“‘ft
o =0 T=0 I A R )
6 =1 ( T >0 , f = 0 B
6 -0 ' T >0 £ w00 _

w

Solution for small = -

As already mentioned we assume that for sufficiently small values of rthe thermal
boundary layer, growing within the already-established steady velocity boundary layer is
very much thinner than the latter. The velocity components # and H may therefore be
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replaced by their values.near the wall. These values in their series expanswns as given by
Cochran around ¢ = 0 may be written in terms of f and 7 as

e ) ()=o) e () - S (e)

and o ) ' )

2 5 16 -\’
=ty 81( 2 )+ £3( )2 + 50, & (~) ——65( )7+ 1 56(—)
i 5 ¢
Substituting these values in (5) we get after rearra.ngmg
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B, o ao 16 | ' |
+ = { £ —— —~3 & mo} ) ‘ (8)
We consider the possibility of the splllthn of this equation in the form
W) = D 237 4, 9 | ©
. r==0 ' e
where 7 is an integer and ¢, (£) satisfy Qrdjnary differential equations ‘ A
o+ 2%b=0 10)
” ’ " 8£ 0 o - 7‘1-» J’] A
it 2y o5, = —-{ mh o | a5
sg o by )
b+ 28— 124y = =2 { mé, —§¢1} + § { mqso } (12)
with boundary conditions N
$o (0) =1 ¢ (0) =0 >0 .
(13)
$r (00) =0 for all r
Solution of (10) to (12) subject to (13) are
¢o = erfc é C(14)
@
$ = 3vo[—erfc§{ 3m—-1)§3—3(m 1)5}

—3 (m + l)f e ] (15)
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. AT
64 B2y ¢ 8a? h
— 2 Zol i, — o 2
ay 150»\/?{5a0+ av};az— 0"\/_7-7 (m 1)
8 ¢ - ’ '2mb20 4(120, ; :
by = 5 {(@m — 10m 4 3) a% — = };bg=— — (m*—1)

From the definition of heat transfer coefficient &, ,
3T
K (E) = I (To — T,,)

2 =

where K is the thermal conductivity of the fluid. Then a local Nusselt number may b

defined a8
hr { v \} ]
Ny ='K“‘-(ZI) ——-,( 2l )u:O

—4/ 20
— 3 o .
=i (8§)a=0.

Hence from (9), (14), (15) and (16) we have

. —% .
Nu, = 0564 ot ¢+ 01275 (m + 1) 7 — ~
—1 52 ) 0071

—0e T % *0012 (17m? + 20m — 9) + ——— (m+1).\$ + 0 (%) (17)
Solution for- larger , : ,

For large values of - 7, the above method will not hold, because in particular for very
small values of o, the thermal boundary layer will be much thicker than the velocity
boundary layer. So we consider the energy equation in the steady state and seek pertur-
bations of the thermal boundary layer very near the dise. Here we retain only those terms
in velocity components which are linear ing. This is more appropriate while considering
the solution for large o. In practice this approximation is found to he acceptable when o
is of the order unity. The energy equation (4) (for steady state) takes the form

a%0 a6 -

Let ' 0 =10 () 4 6, &7 (19)
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0, bemg ‘the unperturbed value and 0, satlsﬁes

8 01 a01 — ) - y
3 — o H—( GC alf’mol—a—é—; =0 (20)
with boundary conditions 7 :
6, (0,7) =0 .
’ 21
0, (00, 7) = 0 : .
Assuming perturbation } v
by &) == (7) ¢ (0) (22)
(18) becomes » ' :
L S op iz
-52-2“ (J'Ii"ﬁ--—~ qu5~—-T5;—0 (23)
Retaining only { order terms in the velocity components
2% S, op dx
—afz - T (g C m ¢ ‘—w— —é; = ‘ (24)
32/3L% — aa, {m ¢ gxfdr -
| = = S = (@)
which gives % == exp (— pn 7) X const
and the general solution is
6, = X . Cpn ‘ﬁpn ({) exp (—pau 7) (26)~
N= . . v
Also 4 ‘L
_-az.z__—maa0§¢pn+pnu¢pn =0 ‘(27)
subject to . v V
‘/’p,, 0)=0; o, (0) =0 ~ (28)
We define a new variable v
which transforms (27) to
a2¢p” . .
— 8 ¢p, =0 (29)

0s®
echnical Information C b
subject to conditions (28). The solution of (2!5 sat1sf ying the (rﬁé)gitolg &ﬁ;r:oﬁi%ﬁ] in C

28) is
(28) Sena Bhdw:m ivew Delbi

¢pn == Ai (3) -2 (30)
o .oouno---u‘;ro “ssss s00em
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where Ai(s) denotes the Airy function. For s > 0, 47 (s) has no zeros for finite s, but for
8<0, Ai(s) has an infinite number of zeros M s—=—s, with 4¢ (—s, ) =0. The smallest
value 8;, which has the largest contribution to @ (r) in (22), and for which (30) holds is
s;=2-338 and the corresponding value of p, which the first condition of (28) gives at
{=0is :

- mao §'

Thus as 7 -> oo the dominant term in 8, is given by

0, = Cp,exp (— p, -”) Ai(—s) (31)
- The constant Cy, will depend upon the initial growth of the thermal boundary layer. The
local Nusselt number as defined earlier is given by .
Nu, = Nu, — 0-5664 (ma)!/* C,, exp (— p, 7) (32)

where Nu, is the local Nusselt number for steady state and it has heen tabulated for various
values of o and m by A.A. Hayday’. From (33) it follows that the . steady state is
approached as an exponential decay. e LR

ACKNOWLEDGEMENTS.

The author expresses his sititére thanks to Dr. I.J. Kumar for guidance and valuable
suggestions throughout the preparation of this paper, Thanks are also due to
Dr. R.R. Aggarwal, Assistant Director (Maths), D.S.L. Delhi for encouragement and
helpful criticism and the Director Defence Science Laboratory, Delhi for permission to
publish this paper. ,

REFERENCES

. Voa Karman, T., Z. A. M. M., 1 (1921), 283.

. CocERAN, W.G., Proc. Camb. Phil. Soc., 30 (1934), 365.

. Mimzrisaes, K. & Poursavsen, K., J. dero. Sci., 19 (1952), 120 ~
. MoraaN, G.W. & Warnee, W.H., J. dero. Sci., 23 (1956), 937.

. Ligurams, M.J., Proc. Roy Soc., A202 (1950), 369. 1
. Riey, N., J.Fluid Mech., 17 Paxt 2 (1963), 97.

. 7. Hayoay, A.A,, J. Heat Transfer, Trans. ASME, C87 (1965), 445.

S O W N



	Untitled
	Untitled

