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Lighthill’s problem on the diffraction of shock wave past a convex corner has been investi-
gated by the application of Ting and Ludloff’s method. The numerical computation for the
pressure distribution along the wall has been carried out for P/P =3 and P/P,=10. The
results agree with those of Lighthill, .

Lighthill! considered the diffraction of plane straight shock wave past a small bend
and gave a detailed analysis for the case of a convex corner. Ting and Ludloff2 made a
more general approach to the problem and obtained explicitly the expressions for pressure
and density in the whole domain behind the advancing shock wave. In particular the
pressure and density field were computed by them for a concave corner. In this note the
pressure distribution behind the diffracted shock wave has been computed for a convex
corner by Ting and Ludloff’s method and the results have been compared with those of
Lighthill for two shock strengths (P/P,=3 and P/P_ =10). This work has been carried
out to extend the case of diffraction of normal shock wave to that of oblique shock wave.

FORMULATION OF THE PROBLEM

After the shock wave has crossed the corner it gets diffracted and a non-uniform
region bounded by the diffracted shock, Mach circle and the wall is formed. Let the velocity
of the shock be Uo and the velocity of flow behind it be (Uo—U). A coordinate system.
(@, y) is chosen fixed in the flow behind the shock with the x—axis coinciding with the plane .
wall. Since air enters the non-uniform region across a curved shock, a rotational motion is ™
expected. Assuming the disturbance within this region to be very small, we obtain the
following relations from the equations of two-dimensional unsteady rotational motion.
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where pM), p®, u® and oD denqte 1.;he first order perturbations in pressure, density,
velocity in the x—direction and velocity in the y—direction respectively. R is the un-
perturbed density and C is the velocity of sound behind the shock.

Eliminating p®, «) and +®) from equations (1) we, get
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The problem now reduces to finding the solution of the equation (2). It is then necessary
to specify the initial and boundary conditions for p®), T
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BOUNDARY CONDITIONS FOR 1‘9(1) TN THE NON-UNIFORM REGION
(4) On the tncident shock front ,
The disturbed shock front (Fig. 1) can be éipresse‘d by the equa;ﬁozr'?
e =T —e g g0 + 0 () I 3)

Then the shock inclination is given by
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Let us define the various components of velocity of flow relative to the shock as follows :

g, = normal component of veloclty (béhind)
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¢z, = tangential component of velocity (in fromt)
= (U, — ), ey +0(e) : (10)

Substituting the values of ¢, , ¢, , q,, and ¢,, in the oblique shock conditions on thy
curved shock front (x = Ut, y > 0, {), we obtain
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Fige l-—Geometry of curved shock
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+ Eliminating ™), v1), () and p1) from t‘he‘equations (il) by using the equation (1), g
we get the following boundary conditions for p(!) on the shock front
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(i) On the wall
A first approximation is \
| W@ 2 Ut,y=0,0 =— U —O)f o +U — V)]~ (13)
where the prime means differentiation with respect to the whole argument.
From equation (1) the boundary condition for p(1) on the wall y=0 is

P , '
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(55) On the Mach circle - .

As p'l) varies continuously across the Mach circle the boundary condition may

simply be prescribed as pM —-0 as V Ryt —> © (16).
1 .
, INITIAL CONDITIONS FOR p)

The two initial conditions are ~ \
P (@ <Uty>0¢t<0=0) 7

and ) < Ut y>0,t0)=0) : (16)
DERIVATION OF THE ANALYTIC SOLUTION
‘By using Lorentz ' transformation - ‘
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the waveé equation becomes
W U — _ |
I it i e Y =0 : : CL e (18)

-



"

82 »'. . Der.Sov J,Von 16, Avri 1968 - .

and the boundary conditions become
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The initial  conditions  are now
o - , . o .
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Like Ting and Ludloff? these boundary and initial value problems can be solved
with the help of Possio Integral. '
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where p, " denotes the strength of the temporary sources of dlsturbance and the deno-
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minator represents the pseudo distance between source point £, 0, T and 2, y,¢. Therefore
_ from (23), inserting proper integration limits, we obtain .
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where A, = )‘o
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A and Aa are the roots of the quadratlc equation
W—2M X 4 ( 1/ M) = b

and 4, and 4 are the solutmns of the following simultaneous equations .

——



N B1swas : Dmiquomoy Praxe SrrATGH? 800K WAVE ‘ 83

- " [ P k 8 MU
Mt A Y A A= — o Loy

and - TS

Rt Ry KA Rty = 2 (5 o +24)
In the case when the angle is very small say e, the equatlon of the wall surfacé beyond
the comeris y_—ef(m) _ ,
where N —|— (Uo — U)t T - )
In the simplest case f(a') =2a' '
Then f' (@) =0 for &’ >0 and f (@) =0 for o' <O, Furthermore,

fi@)=0 (fora’ # 0) -] ,
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Using equation (25) the pressure integral (24) yields * ,
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In the event that A; > 1, Cos—! terms will be replaced by corresponding Cosh—1 terms
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Flg 2—-Wall pressure distribution and shape | Fig. 3—Wall ressure distribution and
of dlstnbutlon region for p/p,=3 shape of distribution region for p/p,=10

N



Using this relation the pressute &tﬁbuﬁon along the ‘wall lms been oomputed for
P—- = 3 (Fig. 2)and£— -—-IO(Flg 3). Ithasbeenfoundtoagteemththemult obtain-

ed by nghbhlﬂ; :
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