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Stability problem both forsmalland large yawing motion of aspinning projectile has been
disoussed. In the latter case criterion for stability of steady conically yawing motion has
boen obtained. Partioularly it has been proved that with a tilting moment coefficient of the
type w(3)=L%/456 [1—4gs (1—cos3)] the motion of a shellin steady state is stable like an
equivalent top only when gz0. I .

A few topics on the stability of a spinning shell have been discussed, particularly,
the McShane-Murphy?! stability conditions and the stability of the steady precessional

motion.

In the first pa.rtk of the paper we have derived McShaﬁe—Murphyl stability condition
“for slowly yawing motion from Fowler’s® dynamical equations, generalised by Rath®
taking into account the complete aerodynamic force system of Nielsen and Synge®.

The second part of the paper is devoted to the study of steady conically yawing motion
of the shell. In case of broad side fire from an aeroplane the initial oscillations of the shell
are such as can not be regarded small as in McShane-Murphy" linear theory. For this
~ purpose the coefficient of the aerodynamic-moment (tending to increase the yaw) is

treated as an even function of yaw as suggested by Fowler and Lock® and the stability
problem in the non-linear case 18 treated in analogy with the common top. This hasled us
to examine the stability of motion in steady state of the shell. Conditions under which & .
shell behaves like a common top for stability purposes have been obtained and it has been
shown that the steady precessional motion of the shell is not essentially stable as that of a -
common top. Finally the stability has been considered of the normal motion—for which the
axis of the shell coincides with the direction of motion of its centre of mass. The stability
condition analogous to a sleeping top holds good even in this non-linear case as already

proved by Fowler and Lock®. — _ -

SYMBOLS AND NOTATIONS

? = unit vector in the direction of the axis of the projectile, -
?: unit vector along the tangent to the path of the c.m. of the projectile,

8 = angle of yaw. ) ) ’
p = air density..

v = speed of the projectile c.m.

w = angular velocity vector of the projectile axis.

d = calibre of the projectile.

N = angular speed of the projectile round its axis, .
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A B = axial and transverse moment of inertia of the pro]ectﬂe

Q= ANBY
a.__localveheltyofsound &
ERE -}-95 N AR U PR T AN

¢ = vector yaw of the pro]ectlle FA :
:1 8 = inclination of the velocity vector of the projectile with the plane of horizon.
8, = value of 6 in the corresponding normal position of the projectile,

P = inclination of. the velocity vector of the projectile c.m with the plane of fire,
commonly kiiown as the angle of drift, )

~m = mass of the projectile. R

-> .
. .g = acceleration vector‘due to gravity

Parr1

MeShane-Murphy stability condition

. The aerodynamic forces and moments actmg on the projectile are given by®

S - - : | |
" R=—p@f X =—mfi X Wm
e R~ N S ST S P b (9
L=p@PfiXx \ZxX)=mop12-XzZ X[ @
C > e - = ‘ )
M:—‘pdsﬂz\anX‘_Z=f4X>’(Z : S (8)
= - - , ’
ol =pdbodfeZ -=—ANfZ o @
A \ “ i
-3 ‘ > = = : Se> e =)
J=pd4va,Z><(Z><X)=ANf5§Z(Z-X);_X§ -3
—> - > - = S g
 E=pBoNfRZX X=mofy Z X X ' ()
-> - - . :
H=pd4 'v'*wf, =—Bf7w ] s S - (T
P=mvofyZ X2 : L A - (8)
RIS~ 2 . R '
Q=—mofZ » T S (9
- *) U . S ' , - L ey
Te=—BfoZ, - (==dja) (10)

In these equations fi’s are functions of 8, v/a, & d/v, N dJv etc; the function Js eon-
tains also a factor N. For practical purposes however we treat them as functions of 8
and v/a only.

t Across (X )and a dot () in the above relatlons signify as usual vector andscalar products of vector .
quantities. -
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The general vectorequatwnofmotwn S » e §5
Consider an orthogonal rlght handed system of movmg ax1s, whose ongmm the centre

Y
of mass of the shell and which moves in any manner with an: angular veloeity.-# -relative
to some inertial frame. Relative to the moving frame of reference one can write the vector
‘equation of motion of the shell as follows: I R TI9 I
| . @=—fe8 (m
= D> e =S S S ->
QZ 4+ Z X E—22 —ZXx86 +f, Z) (Z 0) ‘
—Z (Z:6)+ & —Q (Zx 0 .
=2 2 2> = 2> ol C R T SR
'=,{4X><Z+Qf5§_z (Z.X)——X}

—fi (Z X Z + 6) — fio(Z — Z X 0) - -{12)
for the angular motion of the shell and ’
V=g X —fi+fiSh—FfS ' AR A S (13)-
where S8, =Z X Z' X— (2 0)Z X+ 6 X (14
8 =2"X—72x 0 X (15\
S e3> D S >/ O SN e
X’—,X><-0=$g——X(~g'X)%/’”‘l‘fz{Z«X (Z X)}
+f3?>< ? [ (fs 81 —fy z) sEL T e =
o : o B
=S S > S B SaS g "«'(]6)
+f9(Z’—-Z><0) fs(ZxZ' (Z ) Z— 96 |
for the rectilinear motion of the shell. ' S
Choice of & moving coordinate system : - £

Choose O- 123 aset of right handed orthogonal cartesian co- ordmate axes, such that 03

coincides with X and O1 is in a vertical plane containing 03, and 02 is at right ang,le to O,

The stationary co-ordinate system O-zyz at the gun position is such that Oz 1sralonﬂ
the direction of fire Oy vertically upwards and Oz to the right of the gunner.

- Let (Z,, Z,, Z ) be the compoxients of Z along the moving ‘axm .0-123 and%-;ﬁ, ¥
the mchnatlons of the vector X with the ﬁxed plane zz and @y 80 tﬁat v, have f"f':‘:fkf

Z = (71» Zy Zg)

= (0, 0, 1)
= (— ¢, ¥ 0)“.‘}‘ 2
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The above components of the vector relate to movmg axxs 0-123.
The Kelley-McShane equa,twn of yawing motion

The complete dynamlca.l equations of a spinning shell in scalar form are now
”“"“'981116"‘13 + fs By —fo Sy - an
——gwd|o+ filit i = | h B B0

{2 — B ) A T T ¥ — T ) Yo o
V=—fBthiZa= [ fo B GV —f Gl — 5 2

+n Gy —nH—r} T (19)
@ ——fa - | o (20)

2,2 — L L+ QL — QL+ L8 [ 2) (G Y — 2y W)

Ly Ly — B ) — A + Q2,8 ,

Ty 9 Ty Ty By T — T T W) — fi (B A 2 0) ()
Z Zy — 2y Ly Q7 — 2L + Z + [y Zy) (Z,ﬁ';—Zlda') o

2y (Zy 0 — Z W)+ O+ QZy S

= fao Zy + Qfs Za 23— fvzzl"‘z Z1+9 f1o Zz +Z W) (22)

and
Zy = (1 — 7y "“Za)
For slowly yawing motion Z, §' — Z, 0, Zy 0' — Z, ¥/ and Z, 0” —Z «/1 are neglected
~and Zg =150 that the preceeding equa,tlonﬂ of motion, aftor lmearlzatlon and approxi-
‘matmg by means of normal equations{ are
v = -—gsinf—f . .
O =—goeostlv +foaZy+fsZa—fo (L +0)—fs (Zd —¥)
V=—fih+fiZsg— Vs (Za'. + '/") + fa (Zz' - 9')

A = fe 2 : . -

Ly +921°"*/‘ +99'$“f4za+9f521+fv(za +¢) 1
L —‘f1o(Z1 + ¢) : .
QL 40+ O V=f LA & ) |

- —fo (Zd +¢") -
- In the above equations puttmg

AN

@3)

§—Z1+ZZ, i o= (=

t normal equations are 8. = —yg 008 0/ v, v;' = —g sin 6—f,
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X = O+iy , ' ' -
f=fi—ifs ‘ )
l=f9“—’:fs

we have S -

f”——i!)f’+X'——iﬂx‘=f4f—-ii~9fsf—-\vf1f"“f7x' "
+ ":fm ,fl + ':flo —X' . 1 A (24)
and : - :
= —gocosfv }-fé€—1¢. ' - (%)
=0 4 f& —1¢ ' © (8 =—gcosBlv) (26)

after neglectmg quantities of small order such as [ Zs k = 1,2)and V Z'x (k = 1, 2)
for small yawing motion.

Now making use of (25) and (26) in (24), after neglecting products such as f; f; for
small yawing motion, we have
(= R+ fr— %fm +f) +£ (—f4 +iQfi—i2f)
+ g cosBfv § — 2g sinbfv — f1/” (fo—tfr0 — ¢ Q) }=0 Soen
In the above equations by substituting 3 :
k2 = Bjmd®, v = Ndfv', €= pd®m
and hence mdentlfymg w1th McShane"

N fi = () ¢= fs = (v/d) (B/4) ¢; x*-
fo= @) ¢ " fo= (v/d) (B]4) 4 x* '
fs = (v]d) v ¢x fr = (v/d) ¢yu k2
fi = (/AP ¢m k2, and fi = (v/d) v ¢m
and making a change of the independent variable through
f(v/d) dt

where p is the dl.mensmnless arc length of the trajectory. of the shell we have..

Gt [k + b — do— gdoindfo? — iv (4B + b+ Fo4e) 1§
[ —dnkt— (4B) ¢xv® — iv{ (4/B) b — K2 s } 16
+gd w2008 6§ —2 g dv2sinl — ¢y — k2 ¢,, —[- i vk 2dey + 6. (4/B). v} (28)
which is the Kelley McShane® cquation of slowly yawmg motion of a spinning shell. Here
the overhead dot nnphes denvatlve w.r.b. p.

Since in the treatment of Kelley and McShane® it has been shown that there is no con-
tribution of the term containing ¢xr to stability and also one knows that for ordinary pro-
jectiles with small-yaw motion k2 ¢z < < A/B, we write the homogeneous part of the

“equation as

'£+<H+ir,—f;)é+(~M—¢7T)é'mo' @



where o SeT -
H-“-‘)‘L*‘ﬁn'j"k;z,‘f’ﬁ' ‘ 1 .
Jy= — gdvend \‘ B
v = (4/B)» ' '
M= k2 ¢+ (4/B) ¢x
T = ¢— (BIA) k2 ¢,

For dmcussn/ on of stability we need to examine the transient solutions of (28) é.e., the ;
solution of (29). For this we need the equatlon ,

‘ v = (D — Jy ) v ‘. ; L (31)*
where _ : : . i
D = ¢ — ¢ md?¥d. S (32)
Approzimate solution of the equation of yaw
With the transformation
. ' . . p »
§=gepl2 [-(H+ J; —iv)dp - - (33)
(29) reduces to . q._ g =0 | (34)
andwith W = (log g) | o (35)
the equation (29) reduces to : S o ‘
| WhWeer = 0 ‘ T e -

where

4‘r2>={4M—:72_+(H+ J,,)2+2z‘7»(2T—-H-—D)]

Noting that the aerodynamic coefficients ¢’s and v are slowly varying functions of p
and thereforc ¢ approximately constant, so that approxuna,te solution of (36) may be
taken as W=<41r—7,r (87)

using a W.B.J. K apprommatmn’ Hence the transient solutlons are glven by

¢t = 1ewp]/2f——H——J +'I«v—-€+{—'m+2®v(2T H— D)}

) , .
o Kqeap ]/2.”: H—J, +’b V—e— {——-m+2'bv(2T H— D)} dp(38

o .

where K, , K; are constants of mtegratlon

#(31) obtained from (20) through £’ = — £, 2

- P 1 —
bvtuy (AN/BY = — (o/d) (BIA) ¢, £~ (A/B) N sud 'y = v [$, — (md%/4) b, + gd o sin0]
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, vand ""ﬂiﬁ .

e%}/r#(Dng);[{v——z(2T H— D}/{m—-—Zw(ZT e D)}]

_(D-—J Ve R, , ’ ,,(’3‘9)‘
Since (D — J; ) ¢ is small compared to v 1t maybeneglected. L o
We note ‘ o

URETEE FU S

e1=—,—v‘*‘[f7zi+-2<21‘,—a—_—'bf]/{-—2+4 2<2T He D)} “0)

- and - “ e - Tl
T o | ‘ - 2
when‘ %;>>]2T—H—-—D1andsmcenmemaﬂy_iz‘.ﬁ
- - —2 T ‘ :
v < 1/20  wehave ¢ =v "” T iy d ‘ '(42)

MecShane-Murphy stability conditions

According to Murphy a pro]ectﬂe is dynamlcally stable if the yaw descnbed by (38)
does ot increase with time. This happens if the following conditions are satisfied.

n%

ey

B4 T > | e{[~——m+2@v(2T——H—-—D)]} o
Here Re stands for the real part of the expression inside the curly bracket and R

 e=L (D= e - L 23
_puttmg 4= —m amd-b=2v(29—H—-D) 7
and using Deo-Moivers theorem the conditions (43) 1mp1y s Wi L e b ’
_ H + 5’3“’{"; [ ( a? + b2) + a} / ] u,,x (45)
| '2<‘H'+2*.>>.4(a=+b=,>+a
,and ' : . . : o
| :  EtTso .
These in turn give rise to two sets of conditions. - Wntmg them aeparately wé have
S HAE> S f':‘v““ o T AL
{2(H+ )2-—0} a2+b2J? T e
and i | S R S :
H 4- ;:—=9 L by et B (10 ’
; o b=10 . 4
N K B A PR



h the mequa.htles (4.-6) and (4:7) we 1"31313“’ the 34’1'65510’1 for a a,nd b and neglectmg terms

“ of second degree in_¢'s, we have ﬁnally )

H+e>0,v-——4M>v [(29‘ —H— D)/(H-I—s)]

| /
where _ : ' ) R
T=1J, (1 — ) + D, (D-J,,)_, B )
and , ‘ ‘ ' ‘
"5#7[@2—4M»+M2T4H—ﬂﬁ]
- [(v ——4M)2+4v (21’ H— D)]
\Nv //(v —-—4M),{1f v *—-4M>>(2T H D)]
and ' \; \ ) o .
_ H+?;‘0 T )
v(2T —H— D);O,.‘ s -
4 M> - f

as our stablhty condltlons i.e, elther (4) or (B) must be satisfied for the promctﬂe t0°hm

dynamic stability.

(4)

(B)

We observe that the above cOndltlons requlre that v — 4M must be posﬂ'.lve € is

| positive and attains the minimum value unity for infinite spin (v - oo). If (D—J ) be positive s
which is satisfied over the upward branch of any trajectory and is true over the entire length "

_of flat tra]ectones dealt with in spark-range work, the minimum value of «, ¢ corresponds -
" to the minimum of & Thus Mm 51 =1 and Min, ¢= D for flat tra]ectones hhe stabﬂ;ty

~ conditions are

_H+D> |
s v~r[2(T-—H—-D)/(H+D)]

where H and D are given by’(30) and (32). .These are precisely the conditions of stablllﬁy

laid down by MecShane and KeHey6 If'we oheose the sta,blhty”parameters as

S, =+ K ¢H“‘¢‘R
B S2 =2¢, —2 ‘ég — 2m (@*/4) $;

Sy = 2K dgit @ dr —21 ) (md2ld)
and N H

e -~ - - E ~

o gt -
S = 4* ,,2/(43@ K ¢u)
(©) may be wrltten as ‘ :
1/8 <“Sz 3‘/81 , 8y >0

which also unphes that S >]“ Regardmg conditions (B) we define with Murphy the foHow—

ing condmmns

'<0>'

s
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, v—4dM >0 de. 8>l . N (-
- as the gyroscopic stability conditions. Where the spin is zero, (48) giv o8 ‘ i
<O o)

which happens if the centre of pressure is behind the centre of mass of the projectile.
(50) is referred to as condition for static stability. For fined projectiles—(missiles), (50) is
satisfied and they are statically stable, whence the following conclusions may be drawn.*-

(1) Gyroscopic stability is sufficient for dj;namic stability of staticé,lly stable projectiles
(2) Giyroscopic stability is-necessary for dynamic stablhty |

(3) If the spin is zero, static stability is necessary for gyroscopic stablhty

(4) For any spin, static stablhty is suﬂiclent for gyroscopic stability. .

(6) IfH 4 ¢>0 and v»=0, static sta.blhty is sufficient for dynamic stablhty

(6) If H ++ ¢ >0 and 2 T—H—D= 0 gyroscoplc stablhty is sufficient for dyna- :
mic stability.

PAB.T II

Stability of steady comically yawing motion

- The top analogy: Consider the yawing motion of a spinning shell. The undamped motlon
in yaw of the shell is nearly the same as that of the common top.

> -
- (InFig. 10 Pis the axis of the pro]ectxle OT is the direction of motion of its cm‘0’
Q is the pomt usually known-as centre of pressure, where' the aerodynamic force

>
F acts) .
The air couple which tends to increase the yaw has its axis normal to the plane of yaw
OPT (Fig.1) and is written as"’ ‘

M= (5, vfa) sin 8 (51)

On comparison with (3) we have
w=p d3 szu . (52) \

If p == const, the figure axis OP of the shell
executes the same type of angular oscillations
about OT as a common top with the same
dynamical specifications of the shell -would if its -
point of support coincides with ‘O’ and centre -
of gravity with Q and the upsetting moment
due to gravity for- the top has the same value
M of the shell throughout the motion.

Fig. 1

*These are due to M“phy"
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The condition ww=const. is satisfied to & very good approxxmatlon{-'or most of the projectiles
in use. This is because during initial motion, the velocity of the shell is narly uniform and
for small yawing motion as for stable shells in use the moment factor u is fairly independent
of 8 and v/a. But if initial yawing motion is qyite considerable as it happens in case of

pm]ectlles fired broadside from a moving aeropla,ne wé may assume f88 an even funetion
nglven by TS -

p (8 = z,‘. o 3 ‘ ‘ (53)
A A
where m, A ==12 are conqtants The following convement form of (53) vahd upto ~

-5 =35° has been used by Fowler and Lock® S ;
4 o (8) = 5 {]—4 qs (1——0088) } ; S N (1))

The dimensionless constants S and g occuring in (54) are stability factors. Tt will aﬁpeat
from subsequent analysis and also it has been proved by Fowler and Lock that the motion
of the shell axis with 8 permanently zero, is stable or unstable according as 83>1or S<1.
These conditions arc similar to stability mstablllty conditions of a sleeping top, whereas
the nidtion in steady state of a common top is essentially stable this is not always so for.
the shell especially wlien ¢ << ¢
Fquation of yawing “motion ‘ o

If we described the angular” motion of the shell-axis by 8, ¢, ¥ 1+ the Eulerian angles,
such motion is characterised by ,

A)

t :
where the. Kmetlc potentlal Lisgivenby L=7T —{ — f Mds} i
1.e. {BS' -+ B:/a blllz 544 (¢’+¢ 0%3)2’ . ,
S — B:; < cosd —4 gS{cosd —} 009:25)} (66)
7 is the rotational K.K of -the shell and zero yaw position is treated as the position of zero
.potential energy.

.The integrals of the Euler Lagrange equatlon following from (55) for the cycho
coordinates ¢ and ¢ give us _
b gt e B¢ 1n28 + Y| (c// + ¢ c03d) s§_‘= const = BF
“and N AW e cosS): s‘t'z-—.B!) .

~ From these two equations we have -

S ¢ sméﬁ + £ cosd =F ’ 6N
ertmg the reduced Kinetio potential

R = } B[8? 4- (F—8 c0:8)? [sin%s
o 02

— -2—8—{ 0s8—4 g5 (cosd—} cos%)} + const. - (68)

" 4. here § is not the same angle of dnft as has been used prevmusly

£
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the motion equation in yaw is glven’ by’ T e e

(——-)(’R)

t.e. §'% sin’\& + (F—8 cos 8)* --{—.Q2 35 {(]—-—4 q,g) 0033 el e F e

(8] - .
4 2 gs cos? s}= Esin?s , T L9

in the form studied previdusly by Fowler and Lock? and also ‘by Kebbey®

G'cm&ition for steady conical yawing motion
- For a steady conical yawing motion of the shell we must have - =

ThlS condition is of the same f.ype as required for the steady precessmnal motion, of 2
common top. -

At the steady-state position of the shell if we suppose 3= a and ¢ =08 where n is
constant, we have from (60) . , ,

" cos & + "S"{ 1—4118(]-——cosa)}—'n-0 B (/

and from (57)
nsin® o = “mi— cés a ' 6&;.
. 9 - “ h a : ‘ ( ,—

Thus (61) and (62) are the conditions for steady precessional (conically yawmg) rotion of
the shell. Writing Z, = sin? —%— ;equation (61) reduccs to

%_ iy —aT g e )

- which is the condition due to Kebbey® T obtained by grdphica] methods.
Equations (61) and (62) give the Telation between the. constants 7,a ‘and @ i.e. the

_ “values which the precessmnal angular velocity 4 and yaw 8 agsumes dependmg on bhe ra,te
of spin of the shell (of given shape and size) round its axis of symmetry. ’

Tor the existence of a steady preceasmnal motion, 7 as’ glven by (61) must be rea]
and therefore, the inequality -

COS o
1— -

{1_-4 93 (1—-0051)} >0 | o (64)

must be satisfied. Whenq=0, (64) gives T R .. ,
$ >0l - (65)

has TKohe mwses the constant ¢for n_
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WhlG]l is the condition for the common- top; (65) is a suﬁiclent condltlon for' (64) even .
when ¢ > 0. : o

Stabzhty of motion in the steady—state

Conditien (60) 1mpl1es that for steady precesswnal motion the potential energy of the
reduced system, appearing in (58), must be stationary at 8=u, ¢.c. the steady state posmon ’
If we write the potential energy expression as '

B [ (F— cosdr Q2
| .V (8) = 3 [ Temis o {(}OS 3—4 q8 (OOS 8—-% cos? 8) }] (66)
. excepting an additive constant term; at the position of steady state we have

(Gg)" B (67)

and for stability of motion in the steady state it is both necessary and suﬂiclent that we

have - -
v U ' \
as Ju =0 - (88
The latéf'condition is o : «

B 22§ (1—2 n cosa)? = (n® - g) sina} > 0 » - (69)

when oné makes -use’ of the steady state conditions (61) and (62) When ¢ =0 (69)
is essent1a11y satisfied and we say the steady state motion of a common top is essentially
stable. It is clearly seen from (69) that-even when ¢ > 0 the steady state motion of the
shell is olearly stable. If however ¢ << 0 and we write.g = — ¢} condition (69) xmphes

|g] <m® - (coseow —2ncota)® ° ‘ - (70)-;

One can determine the stable nutational oscillations of the shell about its strea,dy state
position as follows: In (58) if we put § = o -+ ztreating = to be small and expanding B
in ascending povwers of 7 upto second degree only, we have S

R=}Buo?— %(ft;)maJﬁ.... o ).

* since (a;; ) « = 0 when d=a« . Further V(x) Leing a eonstant is not included in (71) as

this will have no contribution to the equation of motion.

'd {8R\ oR .
v S Tit-(é—w")_—é_a; =0 - v.("72)
which unmedla.tely leads us to - B
2" 4 2§{(1—2n casoc)2 (n? + ¢) sin? a} 2=0 ‘ - (73)
due to (69), giving the period of stable nutational wbrat;ons tobe - o
%{ (1—2 n cose)? - (n? + q) sin® o }% o (14)

- 1t is a well known dynamical principle that the vibrations about steady state position
of a dynamical system are infact the same as the vibrations about equilibrium position of
the reduced system to’ whmh the problem is brought by 1gnorat10n of co-ordmates Hence
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the steady state positions of the natural system characterised by dlﬁerem:zal -equations
- ~following from (55) should correspond to the equilibrium position of the non-natural (re- .
duced) system given by the ' differential equation (59). The closed phase trajectories of
the system (59) will, therefore, correspond to the stable nutational ‘oscillations of the shell )
axis about the steady state position. The phase trajectories given by (69) may be expressed -
T T :
B Y =4 qZ— . —{-‘49) Zz—\H +1—?’; 2 +(2h+H)—Zh ~  (1D)
" if we writein (59) - : R -

e

%5-{ =y,Zﬁsm2f§— ,Z;=j_ $i32’J
and oo T RO
h=(01+20)3+2CZ ~ - (16)
H =108+ (4 e — _,;_)zo — 4 (G”z__\q) z.2 r | : s 7(77)

_usmg.mitial conditions at ¢ = 0, 8 =3, 3?82? = b, % = G./ Thgy can be drawn inthe

phase plane (y2), noting that the \difnmically_pgssiblg motion®are for (0 < 2 < I).-

Stability or normal motion \ S

- During normal motion there is no yaw of the projectile. The stability condition of an -
equivalent (sleeping) top shows that this motion is stable or unstable according as 8> 1
or S<1. The same result, however, is true even when the moment coefficient of the -shell
is an even function of yaw as shown in (54). This has been proved by Fowler and Lock? =
* by analysing the elliptic function solution of the equation (59). - As we have shown here
this result can also be obtained by examining the small oscillations.of the shell axis about 3‘.“'%
. its normal position. To do s0, we ignore the cyclic co-ordinate ¢ and consider the reduced -

kinetic potential S s
R =3B (3 +sin?8¢?) 4+ BR¢ cos d
~ B@® _ : S :
- *‘zg‘{mS — 4 g5 (c0s3"— § c0s%) - - (18)

and introduce small quantities
o m = sin § cos ¢, n = sin Jsin ¢
in (78) and neglecting terms above second degree '

in m, n, m" and n' we have - s - ' /
. ¥R -+ 95'2 sin2 S = m'2 +~n,g ' .
¢ sin? d = mn' —m'n o (79)
. c0sd == 1 — } (m? - n?) C.
so that ‘ = B
R=3%B(m?+n?) —3BQmn' —mn)  * o

+ g A m) . S (80)
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| -

/
- -

but for a constant term ;
The Lagrangmn equatlons now. glve

m—-—Qn fgf;m_o

s "

df’(’&])_

which are th;e same equations as for the equivalent common top As usual the oscxllatmn

charactensed by (81) are stable or unstable accordmg as8 > 1lor S < 1.

to pubhsh thxs work.
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