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The propagation of magnetohydrodynamio shock waves in a self gravitating gas sphets
has been studied. The shock is supposed to be generated as a result of sudden release of -
energy at the centre of symmetry. A similarity solution for the flow is developed.
Numerical results for three different values of Mach-number given by M2=200,100 and
10 are obtained. The magnetic field affects the boundary conditions at the shock
as well as the flow behind it.  For a fixed M, the particle velocity, density and gas .-
pressure decrease as the initial magntic field increases. In the flow field behind the
shock, (tihere exists a transition region across which the effect of magnetic field is
reversed.

The study of propagation of shock waves in spherical gas models of astrophysical
mterest has been of considerable importance in explaining certain phenomenon such as
novae and supernovae bursts. According to observations, such flares result from un-
steady motion of large masses of gas as a result of sudden release of energy in the star,
The unsteady motion of the gas, taking Newtonian gravitation into account, has been
studied by Sedovt. The sudden release of energy at the centre of the star gives rise to
an outward going shock wave. The impact of the shock is sufficient to eject matter from
the periphery of the star with speed exceeding the velocity of escape from the gravitational
field of the entire configuration. Carrus et al.2 and Kopal® in a series of three papers
have investigated the same problem by a purely numerical method.

In this paper, we have studied the propagation of a magnetohydrodynamic shock
in a self gravitating steller model. The magnetic field is transverse to the direction of
shock propagation. The shock is produced at the centre of model as a result of liberation
of a finite amount of energy. The explosion is assumed instantaneous, an assumption which
makes the total energy of the configuration independent of time, T

"FORMULATION OF THE PROBLEM

We &onsider a spherical model and assume the flow to be in the radial direction only.
Consequently, all the flow quantities are functions of radial distance r and time?
only. The gas is assumed to be ideally conducting; the effect of heat conduction, viscosity
ete. are neglected. An initial magnetic field B, in the 6 direction only is supposed to
be present in the.medium. The flow is governed by the usual hydrodynamic equations
with some modifications to include gravitation and magnetic field. ’

The equation of continuity is expressed as

2pf0t + wu dp[dr + p (Bufer + 2ufr) =0 - (1)
The momentum equation gives -
3uldt + w.oufot ++ 1/p. 8/or (p -+ BY2u) + B¥u.pr + m@rt =0 @)

where G is the gravitational constaﬁt\;a d u the magnetic perméability of the free space.
P, p , w and m (r, ¢) denote gas préssure, density, patticle velocity and mass at any
time ¢ in a sphere of radius 7 respectively. '
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The equation determining m (r, ¢) i§ , i
“T'he energy equation, neglecting all the dissipative mechanisms, is
B L (gjat o w ofen) (plpr) = O Wt
Fmally, we have the induc;tion equatioi; for magnetic field expressed as o
2Bot 4 w.0Bjor + B (aufor +ufr) =0 ®)-

The system of equations (1—b5) are to be solved subject to the Rankine-Hugoniot
eonditions discussed under -boundary equations. ' . :

EQUILIBRIUM CONDITIONS
* In the equilibrium case the system of equations (1—5) is reduced to the two equations

sy ’*' Eh a/ar :(ps + ‘302/2”’) + Bozly‘r + Gﬁl'opo//"2 =0 (6)
and om for = 4w p, 12 (1)
The initial density p; of the medium is assumed to vary as certain inverse power of 7

46,0 p, = Ar~ . Substituting in (6) and (7) we get

m, = 4md|(3— w) Al S

- p, = K, A2Gr 2—20

B p = Ky 2@ T

where K, and K, are abstract constants related by the equation
(@—1) E; + (@ —2) Ky — 27](3 — w) = 0 L

(8) shows that the centre of symmetry is a singular point at which the density, pressure
etc. become infinite. In actual conditions they are never infinite but may be very high.
However, neglecting the origin, (8) gives the variation of physical quantities in the equili-
 brium state. The above family of solutions depends on a dimensional constant 4 and

a characteristic parameter , in addition to gravitational constant G.

From (8) it is evident that the mass will be real and increasing function of 7 only if
@ < 3. Pressure and magnetic field will be decreasing function of 7 when w > 1.
-Hence, the limjt. of variation for @ is 3 > > 1. The value of for this probler,
“is determined from the requirement of constancy of total energy of the configuration.

fe b il CBSIMILARITY TRANSFORMATIONS ; L

of energy E, . The law of energy liberation is determined by the three dimensional quan-

B, m ool g0l 202 0
: where : (A)HM. Lw—3 , (G)= M_1 La T_2 o ;

- T ®

-« . We have, assumed that the gas motion starts at time ¢t = 0 as a result of liberation
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The total energy will be time mdependent if w= 5/2 Then (10) becomes

E, =0, G 4 )]

The field of disturbed motion is determmed by the system of dlmensmnal parameters 4,
G, rand ¢{. The gas motion is self smnlar and the laws of motlon can be expressed a3

u*(r/t U, p—R/Gt2
p = ('rz/Gt“) P, m= rs/Gt“) M} (12)

B2u = (?/GrY). B

where U, R, P, B and M are non-dimensional quantities which'are functlon of 17~only
given by

0 =rlleg 460 , 2o .18)
where o, is an abstract constant. Usmg (12) and (13) the system: of equatlons (]—-5)
isreduced to

WU-—8 RR + U ] = 3—30 Ty sl e
2((U—8 U + (P + B)[R]=U—U? — M—-2P+2B)/R ] o

7M’ = 4zR — 3M Ve
[ (U—8 PP +yU'] =4—(3y+2)U | \
2Ty (/%) + 0] =2—30

* where dash denotes differentiation w.r.z. ) and 3 =2/w. The partlal differential equa-

tions (1—5) are thus reduced to ordinary differential equatlons m 1] only

)

BOUNDARY CONDITIONS. ©¢ 2t¢ % i A svedes

In terms of the physma.l quantltxes, the boundary condmons at the shock are
ps (C—us ) =pge
- By (C—wu; ) =Beo. .

' CPe— P+ 1/2p (B, * B’)-—poc"c o
v [r—Dpe +B Y ups +1/2(C—uy ) = - 7P/ (v—1)p, + B ’/upo +1/2C"‘

V’/

m;-——m

‘where the subscripb s déniotes the values of physical quantltles ]ust behmd the shock aﬁd
C, the shock velocity.

‘The shock radius r, is determmed by three dimensional- quantltles G, 4, and t. Thus

=m0 T e Comtain 10

The constant value of 5 == n at the shock wave can be taken as:: umty Thus
we have =1, 9= r/r1 ‘ ’

The shock velocity C is gi,ve»n’ by _
C= d/dt=29‘1/“‘t- ‘ J' o (17)

/
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We put
A2 = a,2c? = (ykyoy ) (w2 )
(18).
B2 = b2c? = (2ky/atp) (w]2)?

where‘ a, and b, represent the sound velocity and the velocity of Alfven waves in the
undisturbed medium respectively. ‘

After transformation to non-dimensional form, the equations (16) yield

g R = {1 — (0/2) U} b , (19)

wB=2/ut B2 (g RE @)
%P = (2/w)? [(«/2) U + A2y) — (B2/2) {(ez R} —11] : (21)
[1—A2(y + 1)/2 (0/2)] U [1 — (0/2) U] = B2 [(1—(¥/2)(w/2) U] (22)
v g M = dn/(3 — w) (23)
The constant o, occuring above, is related to A2 and B2 by the formula ,
ay = myat|(3 — ) [2 (0 — 1) A2 + ¥ (@ —2) B.7] (24)

The system of equations (19—23) define two parameter family of shock waves, if
the quantities A2 and B2 are considered as parameters. For a given pair of values of
A2 and B2, U is first determined as a root of quadratic equation (22). We then get
R from (19), 8 from (20) and P from (21): Thus the values of all non-dimensional quan-
tities just behind the shock front are determined.

REDUCTION OF EQUATIONS
The system of equations (14) consists of five ordinary differential equations in R, P, -
U, M and B . Three algebraic integrals of the equations are obtained. Thus
M =27 R (4 — 5U) (25)
( Mass integral )

By — 6 15y — 20
]7-, ey

PR =« [R (4 — 5D 26)

o : ( Entropy integral )
B=uy B2 | (27
v ( Freezing-in integral )
With the help of these, the order of system (14) can be reduced by three. We thus get
the following two differential equations in R and U. ' C
5 RU' — (4 — 5U) B = (10 — 15U) R}y (28)

7 [10¢4R’ +H4—BT)T"{ 2R (4—50) S 0y }]

— BU(1—U)—10R(4m-+-20,—BmU ) +-ary(60—T5y U ) (4—5U) 5”_7R6"‘7q 5y—20 @9)

Equations (26) and (29) for y = 4/3 take the form

/3

- . P = ay R? (4 — B50) 2 (30)
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7| 300, B + (4 — BT)U’ 31000, R4 — 50)) —3} ,_

= 15U (1 — U) — 30R(4n + 20, — 5U) + 80ay(3 — 5U) (4 — 5U) 3p 31)
Equations (25), (27), (28), (30) and (31) represent the complete solution. - ;

. NUMERICAL INTEGRATION . * *

No further analytical solution of the equations (29) and (31) was possible. Tn order
to investigate the field of flow, recourse must be had to numerical intergration. Numerical
integration for three different values of Mach-number was performed on IBM digital
~ computor. 1/M? was denoted by ¢ and three values 0-005, 0-01 and 0:1 were selected

for g. For each Mach-number three different cases, as mentioned below, were consi-
dered. )
Case 1 _ . Ad=gq,B2=0

i.e., the case of explosion without a magnetic field.

Case 2 A2 =q/2, B2 =g/2

The gas pressure and magnetic pressure are comparable,
Case 3 A2=0,82=q

The initial magnetic pressure is assumed to be much larger than the hydrdétatic gas
pressure. The gas pressure is ignored. In all nine computations were performed.
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Fia. 1—Particle velocity as & funetion of . Fia. 2—Density of gas as a function of dis-

distance from the centre of symmetry, tanee_from the eentre of symmetry. - -
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First of 4l tho values of non-dimensional quanhtes U, R, P, M and B were deter-
mined af tbe shock for the nine sets of values of A2 and B2 from equations (19) to
(23). These were then substituted in (27) and (30) *to get the corresponding values™ of
constants «; and o,

- The dlfferentlal eqiations (28) and (31) in U and R were solved by Mod1ﬁed Euler’s
mgt;hod The quantities M, B and P were then evaluated for each value of % . The
' COmputation was started from n =1 4. e. the shiock and was carried out towards the origin
with initial integration dn = 0-01, which was later changed to 0-001 and 0-0001 when the
convergence in integration could not be attained with given interval. The values of com-
putation for ¢ = 0:005.and ¢ = 0-1 are plotted in Fig. 1—5.

I DN IE R BRI SRRt DISCUSSION s -

. Fxg 1—5 show the variation of partmle velomty U, dénsity p , pressure P, mag-
netic pressute’ 82/2p and ‘mass m as a function of distance from the centre of symmetry.
Curves'1; 2, 3 are for ¢ = 0-005 and 4, 5, 6 for ¢ = 0-1. Curves 1,4 give variation for
case 1 t.e.; A2 =q, B.2=0; curves 25for Case 2 de, A2 =82 =¢/2 and curves
8,6 for Case 3 8., )\02,_ =0, B2= q .Our _results for Case 1 go over to those of
Sedov1 "

From the analysns of the results 11: is quite clear that the presence of a magnetic field \‘

ahead of the shoek has an lmportant effect on condltlons at the shock and everywhere
behind- it. '

The particle velocity decreases as the
centre of symmetry is approached. There are
™ account vz. Mach-number and magnetic
field. Particle velocity is a direct function of
Mach-number. For ¢ = 0-005 and 0-01, as
the magnetic field is increased, the particle
velocity decreages. For ¢ = 0-1, the effect
is of slightly different nature. As the magnetic
field is increased (¢.e., B2 increases), the
particle velocity at the shock and upto some
value of 5 (between 0+15 to 0-2) in the flow
field decreases, beyond which the effect is
gradually reversed. In the transition region
the velocnty is mdependent of magnetic
field strength.

Shock compression (p/p,) decreases from
its strong shock value of (y+1)/(y—1)
(=T for y = 4/3) as the Mach-number is
decreased. For a fixed Mach-number,
the compression at the shock decreases
with  magnetic field. ~The curves
in Fig. 2 reflect that the eﬂ’ect of

[ X<

Fi6.'3-~Pressure of gas as a functxon ot distance
from the centre of symmetry, -+ -

?  two factors which are to be taken mto -
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magnetic field itself is a functlon of the distance from the centre of symmetry. To obtam
a clear plcture the entire flow region can be divided into two parts separatad by & narrow

tra,nsﬂ:lon region. In region B, compression decreases with magnetlc ﬁeld Whereas m‘

region A the reverse is true.

The value of gas pressure decreases as the Mach-number is dacrease,d. For g = 0-005
and 0-01, the flow region is again divided into two parts. The transition region lies between

n =06 to 0-7. Initially the pressure decreases as the magnetic field increases till at -

the transition point the effect is reversed. It is also elear from Fig. 3 that the effect of. th,e
magnetic field is more prominent for lower Mach—numbers ) ,

Fig. 4 shows the magnetic pressure as a function’ of *#. For lower 'Mach:num’béf.

the magnetic pressure is higher. For a fixed Mach-number, as the initial magnetic field
(ﬁ ) is increased, the magnetic pressure also increases. There is no transition region
in thls case,

The mass of the gas is plotted in Fig 5. It decreases as the ongm is approached the

rate of decrease being higher for higher Mach-number. ~The curves start from -mfm, =1

at the shock. The magnetic field increases the value at all the pomts in the flow ﬁeld

From the analysis it is clear that, for ¢ = 0-005 and 0-01, the flow doeés 1ot extend to
the centre of symmetry. A spherlcal vacuum of radius 7* forms at the centre of symmetry
in which 7* = 7*r, where the constant %* depends only on ¢ and equals the value of
parameter 7 at the interior boundary where the pressure and density vanish. For q=01
the disturbance created by the explosion occupies the whole interior of the shock wave:
The flow extends to the centre of symmetry.
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