ESTIMATION OF VERTEX FROM THE TOTAL TIME OF PLIGHT TO GRAZE AND MODIFICATION OF SLADEN'S FORMULA

G. S. Gupta
Armament Research \& Development Establishment, Kirkee

[Received $\mathbf{2}$ Jan., 65; revised 31 Aug 65)

Abstract

The limitations of the applicability of Sladen's formula for estimating rertex heights are discussed and the errors involved in its use are shown. An improved formula for rapid calculations of vortex height from the time of flight to graze is given. A better method for the estimation of vertex height by extrapolation or interpolation, only assuming that the rertex heights at two times of flight are known, is also given.

In the Land Service Range Tables, information regarding vertex height of the trajectories for various ranges is not provided, but is estimated by Sladen's formula

$$
\begin{equation*}
Y_{0}=4 T^{2} \tag{1}
\end{equation*}
$$

where Y_{0} is vertex height in feet and T is the total time of flight to graze (hereafter called the time of flight) in seconds. The formula is true for vacuum trajectories ($g=32 \mathrm{ft} / \mathrm{sec}^{2}$.) and it gives fairly good results in calculating vertex heights in air also'. However, the following examples show that the vertex heights so obtained are $10-15$ per cent less than the actual values obtained by numerical integration of the equations of motion of the projectile in air. Sladen's formula, therefore, does not give good approximation to the vertex heights of trajectories in air, as claimed, in most of the cases and needs modification.

Vertex height and time of flight

The vertex height Y_{0} in feet can be expressed as a porer function. of the time of flight T in seconds

$$
\begin{equation*}
Y_{0}=\mathrm{AT}^{\alpha} \tag{2}
\end{equation*}
$$

where A and α are constants. $\mathbf{m 1}$ vacno $\mathrm{a}=2$ and $\mathrm{A}=4\left(g=32 \mathrm{ft} / \mathrm{sec}^{2}\right)$ which is the form in which the Sladen's formula is expressed. In air, the value of A and α depend upon such parameters as Muzzle velocity (M. V.), Standard Ballistic Coefficient and Angle of Projection.

Assuming that the values of \boldsymbol{A} and α remain constant within two trajectories with closer times of flight, A and α can be determined from the equations

$$
\log \mathrm{A}=\frac{\log T_{1} \mathrm{X} \log Y_{2}-\log T_{2} \mathrm{X} \log Y_{1}}{\log T_{1}-\log T_{2}}
$$

and

$$
\alpha=\frac{\log Y_{1}-\log Y_{2}}{\log T_{1}-\log T_{2}}
$$

Where T_{1}, T_{2} and Y_{1}, Y_{2} are the times of flight and vertex heights respectively of the two trajectories.

Knowing \boldsymbol{A} and a the vertex height of any other trajectory with time of flight T lying between T_{1} and T_{2} can be easily estimated.

Improved version © Sladen's formula

The main difficulty in the application of equation (2) is that it necessitates accurate knowledge of \boldsymbol{A} and a and the extent of their variation with respect to muzzle velocity standard ballistic coefficient and angle of projection.

The calculations being time consuming and difficult to be used under active service conditions, it is necessary to establish an improved version of Sladen's formula of the form

$$
\begin{equation*}
Y_{0}=B T^{2} \tag{3}
\end{equation*}
$$

to cover all combinations of $M \mathrm{~V}$, calibre and time of flight. B is a constant and its value depends upon the zone in which lies any particular coinbination of the three factors.

Errors involved in using Sladen's formula

In Tables $1-10$, column 2 gives the vertex height obtained from the numerical integration of the equations of motion; column 4, the vertex height calculated by using tho Sladen's formula and column 5, the discrepancies to the nearest ten feet. From these tables it is quite evident that the vertex height cannot always be accurately assessed by Sladen's formula and certain limitations, not specified so far, are to be iniposed on its use.

Tables 1-10

Actual vertex heights and vertex heights estimated by Sladen's formula and improved Sladen's formula atong with the discrepancies involved in their use

Table 1

Value of parameters	Actual Vertex $\sim_{\left(Y_{0}\right)}^{\text {Height }}$	$\begin{aligned} & \text { Time of } \\ & \text { flight } \\ & T \end{aligned}$	Vertex Heicht by Sladen's formula (1)	$\begin{gathered} Y_{\mathrm{a}}-\left(Y^{\mathrm{s}}\right) \\ \text { to the } \\ \text { nearest } \\ 10 \text { feet } \end{gathered}$	Vertex Heicht by improved Sladen's $\underset{\left(Y_{1} \mathrm{~s}\right)}{\text { Formula }}$	$\begin{gathered} Y_{0}-\left(Y_{1^{y}}\right) \\ \text { to the } \\ \text { nearest } \\ 10 \text { feet } \end{gathered}$
	ft.	secs.	ft .	ft.	ft.	ft.
(1)	(2)	(3)	(4)	(5)	(;;	(7)
$M V=728 \mathrm{ft} \mathrm{sec}$.	210	$7 \cdot 1$	202	10	.	.
Calibre $=2 \cdot 992^{\prime \prime}$	380	9.7	376	${ }^{1}$.	.
$B=4 \cdot 04$	660	$12 \cdot 7$	1945	111	.	.
	1,140	$16 \cdot 1$	1.1037	1	..	.
	1,610	20.0	1.600	10	.	.
	2.730	26.1	2,725	0	.	.
	5.170	35.8	5.127	10	5,178	$+0$
	5,960	$35 \cdot 3$	5.867	!0	5,929	- 30

Table 2

(1)	(2)	(3)	(4)	(5)	(6)	(7)
$M V=1275 \mathrm{ft} . / \mathrm{sec}$.	25	$2 \cdot 48$	25	0	.	.
Calibre $=4^{\prime \prime}$	110	5. 20	108	0	.	.
$B=4.07$	270	$8 \cdot 16$	266	0	\cdots	\cdots
	530	$11 \cdot 37$	517	10	526	0
	900	14.88	886	10	901	0
	1,430	$18 \cdot 77$	409	20	1,434	0
-	1,780	$20 \cdot 90$	1,747	30	1,778	0
	2,200	$23 \cdot 20$	2,153	50	2,191	$+10$
	2,700	$25 \cdot 70$	2,642	60	2,688	$+10$
	3,300	$28 \cdot 45$	3,238	60	3,294	$+10$
	4,060	31.57	3,987	70	4,056	0
	5,100	$35 \cdot 41$	5,015	80	5,103	0
	7,100	$41 \cdot 77$	6,979	120	7,101	0

Table 3

(1)	(2)	(3)	(4)	(5)	(6)	(7)
$M \cdot V \cdot=2000 \mathrm{ft} . / \mathrm{sec}$.	110	$5 \cdot 07$	103	10	.	.
Calibre $=6^{\prime \prime}$	200	$7 \cdot 06$	199	0	.	\ldots
$B=4 \cdot 22$	350	$9 \cdot 23$	341	10	.	
	540	$11 \cdot 61$	539	0		
	810	$14 \cdot 19$	805	0	\cdots	\cdots
	1170	$16 \cdot 96$	1150	20		
	1620	$19 \cdot 91$	1586	30	\ldots	\ldots
	1890	$21 \cdot 47$	1844	50	1946	-60
	2200	$23 \cdot 08$	2131	70	2248	-50
	2550	$24 \cdot 73$	2446	100	2581	-30
	2930	$26 \cdot 43$	2794	140	2948	-20
	3350	28.18	3176	170	3351	0
	3810	$29 \cdot 99$	3598	210	3795	$+10$
	4310	$31 \cdot 87$	4063	250	4286	$+20$
	4860	$33 \cdot 83$	4578	280	4830	$+30$
	5460	$35 \cdot 87$	5147	310	5430	$+30$
	6130	$38 \cdot 00$	5776	350	6094	$+40$
	6880	$40 \cdot 25$	6480	400	6837	$+40$
	7720	-42.66	7280	440	7680	$+40$
	8680	$45 \cdot 29$	8205	470	8656	$+20$
	9800	$48 \cdot 2 t$	9208	490	9820	$+20$
	11240	$51 \cdot 69$	10687	550	11275	-40
	13330	$56 \cdot 16$	12616	710	13310	$+20$

Table 4

(1)	$\left({ }^{-3}\right)$	(3)	(4)	(5)	(6)	(7)
$M V=1875 \mathrm{ft} / / \mathrm{sec}$.	20	$2 \cdot 01$	16	0	.	
Calibre $=1.849^{\prime \prime}$	50	$3 \cdot 25$	42	10	.	
$B=4 \cdot 30$	90	4.64	86	11	.	
	160	6. 18	153	10		
	260	$7 \cdot 87$	248	10	\cdots	\cdots
	410	$9 \cdot 71$	377	30	405	(1)
	590	$11 \cdot 70$	548	40	589	, 0
	820	$13 \cdot 84$	766	50	824	0
	1110	$16 \cdot 16$	1045	70	1123	- -10
	1470	$18 \cdot 68$	1396	70	1500	-30
	1960	21.42	1835	120	1973	-10
	2630	$24 \cdot 5 \cdot 2$	2405	230	2585	$+40$

Table 5

(1)	(2)	(3)	(4)	(5)	(6)	(7)
$M V=2600 \mathrm{ft}$./sec.	60	$3 \cdot 99$	64	0	.	.
Calibre $=4^{\prime \prime}$	130	$5 \cdot 61$	126	0	.	.
$B=4 \cdot 33$	220	$7 \cdot 41$	220	0	.	.
	350	$9 \cdot 39$	353	0	.	.
	530	11.54	533	0	.	.
	810	13.92	775	30	\cdots	.
	1170	16.57	1098	70	1189	-20
	1620	$19 \cdot 46$	1515	100	1640	-20
	1880	$20 \cdot 98$	1761	120	1906	-30
	2170	$22 \cdot 55$	2034	140	2202	-30
	2490	$24 \cdot 17$	2337	150	2530	-40
	2850	$25 \cdot 84$	2671	180	2891	-40
	3.260	27.56	3038	220	3289	-30
	3720	$29 \cdot 33$	3441	280	3725	0
	4220	$31 \cdot 16$	3884	340	4204	+20
	4770	$33 \cdot 05$	4369	400	4730	+40
	5370	$35 \cdot 02$	4906	460	5310	+60
	6020	37.05	5491	530	5944	+80
	6730	$39 \cdot 17$	6137	590	6643	+90
	7500	$41 \cdot 38$	6849	650	7414	+90
	8350	$43 \cdot 70$	7639	710	8269	+80
	9290	46.14	8516	770	9218	+70
	10370	$48 \cdot 73$	9498	870	10282	+90
	11630	$51 \cdot 57$	10638	990	11515	$+110$
	13130	$54 \cdot 86$	12038	1090	13032	+100
	15070	$59 \cdot 14$	13990	1080	15144	-70
	18450	$65 \cdot 28$	17046	1400	18452	0

Table 6

(1)	(2)	(3)	(4)	(5)	(6)	(7)
$M V=2350 \mathrm{ft}$./esc.	30	$2 \cdot 74$	30	0	.	.
Calibre $=4 \cdot 5^{\prime \prime}$	70	$4 \cdot 27$	73	0	.	.
$B=4 \cdot 27$	140	$5 \cdot 92$	140	0	.	.
	230	$7 \cdot 71$	238	-10	\because	-
	370	$9 \cdot 65$	373	0	..	- ..
	560	$11 \cdot 78$	555	0	.	..
	810	$14 \cdot 11$	796	10	.	.
	1130	$16 \cdot 66$	1110	20	.	-
	1530	$19 \cdot 44$	1512	20	.	.
	1760	20.89	1746	10	.	-
	2020	$22 \cdot 37$	2002	20	.	.
	2320	$23 \cdot 88$	2281	40
	2660	$25 \cdot 42$	2585	80	2759	-100
	3030	$27 \cdot 00$	2916	110	3113	-80
	3440	$28 \cdot 62$	3276	160	3498	-60
	3880	$30 \cdot 29$	3670	210	3918	-40

Table 6

(1)	(2)	(3)	(4)	(5)	(6)	(7)
	4360	$32 \cdot 01$	4099	260	4375	-20
	4890	$33 \cdot 79$	4567	320	4875	+10
	5460	$35 \cdot 62$	5075	380	5418	+40
	6070	$37 \cdot 51$	5628	440	6008	+60
	6730	$39 \cdot 47$	6232	500	6652	+80
	7440	$41 \cdot 51$	6892	550	7358	+80
	8220	$43 \cdot 65$	7621	600	8136	+80
	9080	$45 \cdot 90$	8427	650	8996	+80
	10030	$48 \cdot 28$	9324	710	9953	+80
	11100	$50 \cdot 83$	10335	760	11032	+70
	12330	$53 \cdot 64$	11509	820	12286	+40
	13820	$56 \cdot 85$	12928	890	13800	+20
	15750	$60 \cdot 83$	14801	950	15800	+50

Table 7
(1)
(2)
(3)
(4)
(5)
(6)
(7)
$\begin{aligned} M V & =2350 \\ \text { Calibre } & =4 \cdot 5^{\prime \prime} \\ B & =4 \cdot 26\end{aligned}$

30	$2 \cdot 75$
70	$4 \cdot 30$
140	$5 \cdot 97$
250	$7 \cdot 79$
400	$9 \cdot 76$
590	$11 \cdot 90$
800	$14 \cdot 22$
1080	$16 \cdot 76$
1480	$19 \cdot 49$
1730	$20 \cdot 93$
2020	$22 \cdot 41$
2350	$23 \cdot 94$
2710	$25 \cdot 53$
3100	$27 \cdot 18$
3520	$28 \cdot 89$
3980	$30 \cdot 65$
4480	$32 \cdot 45$
5020	$34 \cdot 30$
5610	$36 \cdot 22$
6260	$38 \cdot 21$
6970	$40 \cdot 29$
7750	$42 \cdot 47$
8610	$44 \cdot 76$
9560	$47 \cdot 19$
10630	$49 \cdot 80$
11870	$52 \cdot 68$
13360	$56 \cdot 01$
15330	$60 \cdot 08$
18830	$66 \cdot 65$

30
74
143
243
381
566
809
1124
1519
1752
2009
2292
2607
2955
3339
3758
4212
4706
5248
5840
6493
7215
8014
8908
9920
11101
12548
14438
17769

0		
0		
0		.
10		.
20		-
20		
-10		
-40		
-40		
-20		
10		
60	.	.
100	2776	-70
140	3147	-50
180	3556	-40
220	4002	-20
260	4486	-10
310	5012	$+10$
360	5589	$+20$
420	6220	$+40$
480	6915	$+50$
530	7684	$+70$
600	8535	$+70$
650	9487	$+70$
710	10565	$+70$
770	11822	$+50$
810	13364	0
890	15377	-50
1060	18924	-90

Table 8

(1)	(2)	(3)	(4)	(5)	(6)	(7)
$M V=2700 \mathrm{ft} . / \mathrm{sec}$.	60	$3 \cdot 68$	54	10	.	..
Calibre $=6^{\prime \prime}$	110	$5 \cdot 08$	103	10	.	..
$B=4 \cdot 33$	180	$6 \cdot 57$	173	10	..	.
	270	S.18	268	0	..	.
	400	9.906	392	10	.	..
	560	11.74	551	10
	750	13.76	757	-10
	990	I. $\cdot 9.4$	1016	-30
	1.320	18.28	1337	-20
	1740	20.81	1732	10	.	.
	2000	22.34	1961	40
	2290	23.51	2211	80	2393	-100
	2600	24.92	2484	120	2689	-90
*	2940	26.37	2782	160	3011	-70
	3310	27.87	3107	200	3363	-50
	3710	$29 \cdot 42$	3462	250	3748	-40
	4140	31.01	3846	290	4164	-20
	4610	$32 \cdot 64$	4261	350	4613	0
	5110	$34 \cdot 31$	4709	400	5097	+10
. . .	5640	36.02	5190	450	5618	+20
	6200	37.77	5706	430	6177	$+20$
	6790	$39 \cdot 56$	6260	530	6776	+10
	7420	$41 \cdot 39$	6853	570	7418	0
	8100	$43 \cdot 27$	7489	610	8107	$+10$
	8840	$45 \cdot 19$	8169	670	8842	0
	9630	$47 \cdot 16$	8896	730	9630	0
	10480	$49 \cdot 19$	9679	800	10477	0
	11400	$51 \cdot 29$	10523	S80	11391	+10
	12400	53.48	11440	960	12384	+20
	13480	$55 \cdot 79$	12450	1.030	13477	0
	14650	$58 \cdot 25$	13572	1080	14692	-40
	15930	60.89	$1+830$	1100	16054	-120

Table 9

(I)	(2)	(3)	(4)	(5)	(6)	(7)
$M V=2300 \mathrm{ft}$. 'sec.	11	1.6.5	11	0	..	.
Calibre $=1.563{ }^{\prime \prime}$	33	$2 \cdot 80$	31	0	.	.
$B=4.36$	70	4.18	70	0	.	.
	140	$5 \cdot 72$	131	10	143	0
	240	7.43	221	20	241	0
	380	$9 \cdot 29$	345	40	376	0

Table 10

(1)	(2)	(3)	(4)	(5)	(6)	(7)
$M V=3180 \mathrm{ft}$./sec.	20	$2 \cdot 23$	20	0	..	-
Calibre $=1 \cdot 574^{\prime \prime}$	56	$3 \cdot 70$	55	1	.	..
$B=4 \cdot 53$	124	$5 \cdot 52$	122	2	..	-
	- 183	$6 \cdot 59$	174	9	.	..
	260	$7 \cdot 80$	243	17	.	-
	362	$9 \cdot 15$	335	27	379	-17
	491	$10 \cdot 63$	452	39	512	-21
	651	$12 \cdot 22$	497	51	676	-25
	846	$13 \cdot 8$	762	84	863	-17
	1083	15.4	949	134	1074	+19
	1368	$17 \cdot 4$.	1211	157	1372	-4
	1701	$19 \cdot 4$	1505	196	1705	-4
	2095	21.5	1849	246	2094	$+1$
	2591	$23 \cdot 8$	2266	325	2566	$+25$
	3116	$26 \cdot 2$	2746	370	3110	$+6$
	3785	$28 \cdot 7$	3295	490	3731	$+54$
	4595	$31 \cdot 7$	4020	575	4552	$+43$
	5578	$35 \cdot 1$	4.928	650	5581	-3
	6749	$38 \cdot 6$	5960	789	6750	-1
	81.61	$42 \cdot 7$	7293	868	8260	-99
	10173	$47 \cdot 9$	9178	995	10394	-221

Note-111 table 10 the figures are to the nearest foot.

Limitations of Sladen's formula

From Tables $1-10$, it is evident that for estimating the vertex heights of trajectories in air, Sladen's formula can be usefully applied only for subsonic muzzle velocities. For high velocity projectiles this formula only gives a reasonably accurate estimate of the vertex height for short times of flight. For higher times of flight Sladen's formula is not at all *\&able. This limitation necessitates imposition of certsin practical restrictions' on the use of Sladen's formula thereby narrowing its scope of application.

Maximum limit of the time of flight up to which Sladen's formula can be employed usefully, depends upon the velocity and calibre of the projectile. The details are given in Table 11.

Table 11

Limits of parameters for the application of Sladen's formula

MV of the projectile lying in the velocity zone of (ft./sec.)	Calibre of the projectile (inch)	Limits of times of flight when Sladen's formula can be applied (see)
700-1000	All Calibres	25-35
1000-1500	$\begin{array}{ll}\text { Over } & 3 " \\ \text { Under 3" }\end{array}$	$\begin{aligned} & 20-25 \\ & 15-20 \end{aligned}$
1500-2000	Over $3^{\prime \prime}$ Under 3"	$\begin{array}{r} 15-20 \\ 8-10 \end{array}$
2000-3500	Over 3" Under 3"	$16-20$

. It would be seen from the above that the scope of application of Sladen's formula for estimating the vertex height of trajectories with a reasonable degree of accuracy is quite limited.

Improved Sladen's formula and value of constant 'B'

If in a combination of three variables viz., time of flight, velocity and calibre of projectile, the value of any one variable falls out of the limits given in Table 11, the vertex height cannot be accurately determined by Sladen's formula aid the use must be made of improved Sladen's formula $Y_{c}=B T^{2}$. In Tables 1-10, column (6) gives the vertex heights obtained by improved version of Sladen's formula and column (7) gives discrepancies (to the nearest ten feet) between the actual vertex heights and those estimated by employing improved Sladen's formula. Comparison of values given in columns (4) and (6) reveal the degree of improvement obtained by using improved version of Sladen's formula.

The values of ' B ' for various zones of variables which give a fairly accurate estimate of vertex heights are given in Table 12.

Table 12
Value of ' B ' and ist variation

Velocity zone in which $M V$ of the projectile lies (ft;'sec)	Galibre of the projectile (inch)	Value of c ms tant ' B '	One inch increase, decrease in calibre of projectile change ' B ' by	$\perp 109 \mathrm{ft}$.'sec. in $M V$ of projectile increase 'B' by
1000-15C0	Over 3'	$4 \cdot 05$ to $4 \cdot 10$	-0.01	$+0.01$
	Under 3'	$4 \cdot 10$ to $4 \cdot 15$	$+0.01$	$+0.01$
1500-2000	Over 3'	4.20 to $4 \cdot 25$	-0.01	$+0.01$
	Under 3'	$4 \cdot 25$ to $4 \cdot 30$	$\div 0.01$	$\div 0.01$
2000-3500	Over 3'	$4 \cdot 25$ to $4 \cdot 40$	-0.01	+0.015
	Under 3'	$4 \cdot 35$ to 4.60	$+0.01$	$+0.015$

Table 12 shows that the value of 'B' always lies in between $4 \cdot 0$ to $4 \cdot 6$ and it increases with increase of muzzle velocity and decreases with an increase in calibre of the projectile. Generally the value of ' B ' varies in accordance with the variations given in columns 4 and 5 of the Table 12. The values of 'B' given on the top of each table and used for calculating the vertex heights tabulated in column 5 of the Tables $1-10$ are readily obtained from Table 12.

CONCLUSION

From the foregoing discussions, it can easily be seen that the vertex heights by Sladen's formula can only, be accurately determined within the limits specified in Table 11. In other words, the value of the constant B of equation (3) ran be taken as 4 within the limits of Table 11. If any of the three parameters viz., muzzle velocity, calibre and time of flight is beyond the limits specified in the Table 11, the value of B should, for better accuracy be obtained from Table 12 for calculating the vertex heights with the help of the improved version of Sladen's formula as given in equation (3).

ACKNOWLEDGEMENTS

I am highly grateful to Shri N. S. Venkatesan, ARDE, Kirkee for guidance and valuable discussions during the preparation of this paper. I am also thankful to Brig. Pritampal Singh, Director, ARDE Kirkee for permitting me to publish this work.

REFERENCE

1. "Text Book of Ballistic and Gunnery-Part I" (HaISO, London) 1935, p. 17.
