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For a class of Reiner-Rivlin fluids charachrised by the relation T =p&+pI D+p,D*. . 
........... + pnDn where T, D and I are the stress, rats of strain and unit matrices rw- 

. pectively, restrictions on the phenomenological coefficients p,,, p,, p,, h.. .when they 
(i) are constants and (ii) accept power-series expansions, have been obtained so that 
the dissipation fmction is non-negative for all poasible rates of deformation. 

Eringenl has established that (n) there exists no incompressible fluid of second order 
and ( h )  the most general second order compressible fluid is a quasi-linear fluid . These 
results are based on the consideration that the dissipation function is non-negative through- 
out for all possible strain-rates. 

Result (a) is very significant as it implies that incompressible Reiner-Rivlin fluida 
with constant coefficients of viscosity and cross viscosity do not exist., This may invalidate 
a large number of papers dealing with theae fluids and t h e i ~  results have to be examined 
critically from this point of view. 

In the present paper it is proposed to find out the restrictions on the material cons- 
tants occurring in the constitutive relation for a class of Reiner-Rivlin fluids so that the 
dissipation function is nop-negative for all possible strain-rates. These are oharacteriaed 
by the relation 

" .......... . T=poI+pl  D + & D Z +  p n D n ,  (1) 

... where T, D and I are res~ectively the stress, rate of strain and unit matricea. po, pl,. p* .. are the material constants. We discuss the problem in two cases (i) when pl,h,. .p, 
are constants and (ii) when they accept power-series expansions. The method used in 
case (ii) has been illustrated by con~idering a tenth order fluid. 

D I S S I P A T I O N  F U N C T I O N  FOR A  C L A S S  OF R E I N E R - R I V L I N  FLUIDS 

Coneider the Reiner-Rivlin fluids characterised by conatituti~e equation (1). The 
dissipation function is given by the trace of the matrix 

i .e .  the dissipation function is given by 

.......... = poI(l) + h I ( 2 )  + + p , I (n+l) (say), 
el 

(4 
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where I (1 ) ,  I (2 ) ,  . . . . . . , I(n) are the traces of the matrices D, D2. . . . . . . . . . . D.(%) 9 is 
scalar and can be expressed in terms of the three invariants I,, I,, I ,  of the t,ensor eij thus 

I(1) = e i i  = I1 (5) 
I@) = e i j  e j  i  = 1,2 - 21, (6) 

F r ~ m  Cayley-Hamilton theorem 

e i j  e j k  ekl- I ,  e i j  e j l  + Iz  e i l  - I 3  6 i l  = 0 (7) 
Contracting the snfIixes i and I, we get 

I(3) - Il I(2) + I2 I(1] - 31, = 0 Cs> 
i.e. 

I(3) = 113 - 311 Iz + 313 (9)  

Multiplying (7) by el, and contracting the suffixes i and rn, and simplifying we get 

1'4) = I: - 4112 Iz  + 2122 f 41, 1, (10) 

I(" = =I," - 5113 I ,  51, I; + 5112 I, - 512 I3 (11) 
( r )  Similarly all I .(r = 2, 3, . . . . . . . . a) can be expressed in terms of 11, I,, I,. 

To obtain a general formula for I(%) , we note that it satisfies the difference equation 
1(4 - I~ I (-1) + I~ I (-2) - l3 1(-3) = Q (12) 

so that a general expression for I(%) is 

I(%) = Al ~ 1 %  +- A2 $2 -+ A3 X, , 
where A1, A2, A, are constants independent of R ; x1 , x2 , X ,  are the characteristic 
roots cif the matrix D i.e. the roots of the equation 

It is known that for the symmetric matrix [e 1, all the three roots are real. Putting 
n = 1, 2, 3, in (13) and eliminating Al , A2 , A, we get 

Using (5) ,  (6), (9) ,  (14), and (15), I(@ can be expressed in terms of Il , I,, I,. 

P A R T I C U L A R  C A S E  O F  I N C O M P R E S S I B L E  F L U I D S  

For incompressible fluids 11= 0 so that 
I(1) = 0, I(2) = - 21, , I(3) =. 31,, IO =' 2 1 2 2 ,  = - 51% I3 , 
I(6) = 3I2 - 212, I(') = 71; 13, I(8) = - 812 iS2 + 212, . . . . , . . , (1 1;) 
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Since I(" is essentially positive, I2 iy essentially negative. I, can be positive or negative. 
We note from (16) that I@)  , I , I , . . . . . . . . . . . .  are essentially positive while 
I , I , I , ........ have the same sign as I,. We now prove that IW is essentially 
positive when n is even and I(n) has the same sign a? I ,  when n is odd and not equal to 
unity. This is easily seen from equation (12) which gives for incompressible fluids 

Let us assume tbat our theorem is true upto I(%-- l ) . If 9% is even, (,n-2) is even and 
(72-3) is odd, so that Z ( n - 2 )  is positive and I'"-3) has same sign as I ,  sc t'hat, from (17) 
we get that I(n) is positive. If w is odd, I ( n  - 2 )  has the same sign as I ,  and I !n- 3) is 
positive so that has the samg sign as I,. Then the result follows from induction. 

From (4), we see that in the expression for + , the coefficients of pl, p,, C L ~ ,  .... 
..... are all positive, whereas the coefficients of p2, p4, p6, .  have the same sign as I,. 

We assume the hypothesis that the dissipation function should be positive for all 
deformation rates. some of these I ,  will be negative and for others it will be positive. 
Thus we draw the c,onclusion that (1) will be a possible rbeological equatior: for a real 
R,einer-Rivlin fluid if 

p1, p 3 ,  ........ 3 P2r-h > ./ 0 
and 

p2 ,  p4,  ........ pfr = 0 (18) 
i .e.  the expression (1) should contain odd coefficients of viscosity only and these should 
be non-negative. In particular, Reiner-Rivlin fluids of the type 

T = - P I +  ,x1D+p2D2 (19) 

with constant values of p1 and p2 do not exist unless p2 = 0. 

Thus all problems using the equation (19) with p2 # 0 have dealt with fluids which 
do not satisfy the above hypothesis. However, we can also say that only those deformation 
rates are possible for these fluids for which qb 2 0 or that this cc nstitutive equation 
mav not hold for all deformation rates. In  fact experjmentally negative valnes of 
have been observed and we al;o have got cases where different constitutive equations are 
required for explaining flow behaviour for small and large shear rates. This stresses the 
need for more experimental investigations. 

- ' C A S E  O F  I N C O M P R E S S I B L E  F L U I D S  W H E N  P H E N O & l E N O r , O G I C A l .  

C O E F F I C I E N T S  A C C E P T  P O W E R  S E R I E S  E X P A N S I O N S  

Let us consider Reiner-Rivlin fluids having rheolcgical equation 

where p, , p, , p, are functions of t'he invariants of the form 

r s t  

For incompressible fluids r must be zero. Let A k , t = B k, 
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From (4), (16) and (22),  we get 

s t  s t 

Thus for incompressible fluids of type (20),  (21)  and (22) ,  we have 

(i) there are no restrictions on Boat ' These can be positive or negative, 

(ii) Bl,t = 0 for odd values of t, 
(Gi) = 0 for even values of t ,  
(h) Blst > 0 if s is even, t  is even, 

- (v)  Blst < 0 if s is odd, t is even, 
(v i )  B2st > 0 if s is even t is odd, 

and (v i i )  B2,t < 0 if s is odd t  is even. 

These give a complete set of restrictions on the coefficients for incompressible fluids 
characteriaed by (20). 

A method for finding restrictions on the material constants is illustrated below by 
a tenth order fluid. This procedure can be extended to any order incompressi- 

ble fluid. 
The constitutive equation for a tenth order incompressible fluid is given by 

7 i j  = (-$)-I- A112$-  A2122 f A31z3 f f A5125 f + 
+ A g  1,3 + Ag I2 1 3  + Aio IZ J32 + A11 123 1 3  + 4 2  12 132 f 4 3  123 13)8 i j 
+ ( p i12  + ~ 2 ~ 2 ~  f P31z3 + /-%It f ~ ~ 5 ~ 3  + ~ 6 1 3 ~  f ~ 7 ~ 3 ~  ~ 8 ~ 2 ~ 3  + ~ g I z I 2  + ~ i o I z I 3  f ~ 1 1 ~ 2 3 ~ 3 )  e i j  + ( I  1, + vz 1: + v3 12 39 v4 124 + v5 I3 + v6 132 + v71813 f v 8 1 2 1 2  vg1z2I3) e i k  e k j  Pa> 

80 the dissipa6ion function is 

1 3. 33 $ E1.4 IZ4 f P5 ' 3  f p6 132 f p7 133 4 = ( ~ 1 1 2  + P2 2 + EL8 1 2  1 3  + P9 1 2  132 + P10 122 13 + P 1 1 V  13 )  ( - 2 1 2 )  

(v1 I 2  f V2 + v3 + v4 I ;  f v5 I3 f ' 6  T32 

4- v, I2 1 3  + vs I ,  + v, 122 I3 ) 313 (25) 
= - 2 p 1 1 2 2 - 2 q I ~ - 2 ~ 3 1 $ - 2 h I ~  f f 3 v l ) I 2 I 3  

+ ( A 2Ps -1- 3 ~ 7  ) 1 2  132 -I- ( - 2 ~ 7  + 3 vg ) I2 133 + ( - 2 pg f 3 ~ 2  ) Iz2 I3 + ( - 2pg + 3v9 ) 4z2 132 + ( - 2 ~ 1 0  + 3v3 ) 
Now I ,  is negative and I,  can be positive or 

tive, we get the condition 

p l < O ,  Po> 0 ,  k < O ,  P P > O ,  2 ~ 5 = 3 v l 3  
2p6 - 3v1 > 0 , 2p7 = 3v8 2p8 = 3v3 9 

2p,  - 3vg < 0 , 2p1, = 3v3 and 2pn = 3v4 (27)  
(27)  gives the restrictions on the thirty three material constants which are involved 

in the constitutive equation (24).  
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