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For a class of Reiner-Rivlin fluids characterised by the relation T' =pI+u, D-+p,D?..

............ +an" where T, D and | arethe stress, ratsof strain and unit matrices res-
pectively, restrictions on the phenomenological COefficients gy, (ty, ttas By ... .When they

i) are constants and (#§) accept power-series expansions, have been obtained so that
the dissipation fanction iS non-negative for all possible rates of deformation.

Eringen! has established that (n) there exists no incompressible fluid of second order
and (h) the most general second order compressible fluid is a quasi-linear fluid. These
resultsare based on the consideration that the dissipation function isnon-negativethrough-
out for al possiblestrain-rates.

Result (a) is very significant asit implies that incompressible Reiner-Rivlin fluids
with constant coefficientsd viscosity and cross viscosity do not exist., This may invalidate
a large number o papers dealing with these fluids and their results have to be examined
critically from this point o view.

In the present paper itisproposed tofind out therestrictionson the material cons-
tants occurringin the constitutive relationfor a classd Reiner-Rivlinfluids so that the
dissipation function is nop-negative for all possblestrain-rates. These are characterised
by therelation

 T=pl 4 py D+ psD® 4 vvinnnennn paD™, )]

whereT, D and | areresgectively thestress, rated strainand unit matrices. p,, py,.«+
are the material constants. We discuss the problem in two cases (i )when uy,pg,. == .,
are constants and (ii) when they accept power-seriesexpansions. The method used 1n
cae (ii)hasbeenillustrated by considering atenth order fluid.

DISSIPATION FUNCTION FOR A CLASS OF REINER-RIVLIN FLUI DS

Consider the Reiner-Rivlin fluids characterised by constitutive equation (1). The
dissipation function is given by the trace of the matrix

pD 4 py D2 dpg DX .ol + pa DI (2)

t.¢. thedissipationfunctionisgiven by
b = Ko €ii - By €ij€ji T g €ij €k €k + ... (n terms) ®3)
= p M - p I® B, | FD) (say), (4)
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where I, 1) ... ... , I arethetraces o the matricesD, D2, .......... D™ ¢ is
scalar and can be expressed in terms o the three invariants |,, I, |, of the tensor e; thus
IV =ejj =1 (5)
1@ = e;;e5; = I2 — 2, (6)
From Cayley-Hamilton theorem
eijejren — Iy eijeji+Iein— 138, =0 (1)
Contracting the suffixes ¢ and |, weget
I® — 1, 1@ 4 I, I0) — 3], =0 (8)
i.e.
I® =1,3—38I, I, + 3I, (9)
Multiplying (7) by e, and contracting the suffixes ¢ and m and simplifying we get
IW = It — 412 I, + 21,2 + 41, I, (10)
I8 =15 —5I31, 4 b5l [,2 + 50,21, — 51, I, (11)
Smilady all 17 =2.3,........ a) can be expressed in terms o I, 1, |,
To obtain a general formulafor I™ , wenote that it satisfies the difference equation
It — [ T L [, [ (—2) — J, J(—3) = (12)

so that a general expression for I(® is
I = Ay oy " 4 Ay @™ . Ay, ™ (13)

where 4,, 4,, A, are constants independent of = ; xy, #;, z; are the characteristic
roots of the matrix D s.e. the roots o the equation

2 — Lo+ I, —Ig=0 (14)

Tt isknownthat for the symmetric matrix [e;; ], all the three roots are real. Putting
n =1, 2,3, in(13)and eliminating 4, ,4,, A, weget

I(n) wlﬂ mzn wsn
1M 2, m, 2

e (15)
I?) g2 22 a4

I3 z3 2 8

Using (5), (6), (9), (14), and (15), I® can beexpressedintermsdof 11, 1,, 1,.
PARTICULAR CASE OF INCOMPRESSIBLE FLUIDS

For incompressiblefluids ;= 0 so that
IW=0,1I® =—2I,,I® = 3[,, I® = 21,2 I = _5],1,,
IO =38I2— 23, IM = TI21,, I® = — 8L, 12t ars, ....,.., (16)
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Since 1) isessentially positive I, is essentially negative. 1, can Le positive or negative.
We note from (16) that 12 I N are essentially positive while
e havethesame sgn as I,. Wenow provethat I isessentialy
positivewhen n is even and I hasthe samesign as I; when n isodd and not equal to
unity. Thisis easily seen from equation (12) which gives for incompressible fluids

IW = —I,In—2 4 [, ](n—3 (17)

L et us assume tbat our theorem istrue upto I»—1), If »n iseven, (n—2) iseven and
(2—3 is 0dd, s0 that I(7»—2) is positiveand I »—3 has samesign as I, < that from (17)
we get that 77 ispositive. If »isodd, | "—2) hasthe same sign as|, and | »—3is
positiveso that 77} hasthesame signas |,. Then the result follows from induction.

From (4), we see that in the expression for 4 | the coefficientsof 1y, g, ps,. ...
are all positive, whereasthe coefficients o pg, 4, prgye v o s« « have the same signas |,

We assume the hypothesis that the dissipation function should be positive for all
deformation rates. For some df these I; will be negative and for othersit will be positive.
Thuswe draw the conclusion that (1) will be a possible rbeological equation for areal
Reiner-Rivlin fluid if

Brs Mg s eovenens s Bty > 0
and
‘lL2 3 l‘l’4 g s e s s e , I.Lgr == g (18)

1.e. the expression (1)should contain odd coefficientsof viscosity only and these should
be non-negative. In particular, Reiner-Rivlin fluids of the type
I'=—pl + py D+ py D? (19)
with constant values of p; and p, do not exist unless p, = 0.
Thus ali problems using the equation (19) with u, % 0 have dealt with fluids which

do not satisfy the above hypothesis. However, we can also say that only those deformation

rates are possible for these fluids for which ¢ = 0 or that this ccnstitutive equation
may not hold for all deformation rates. In fact expervmentally negative values of g,

have been observed and we also have got cases where different constitutive equations are
required for explaining flow behaviour for small and large shear rates. This stressesthe
need for more experimental investigations.

"CASE OF INCOMPRESSIBLE FLUIDS WHEN PHENOMENOLOGICAL
COEFFICIENTS ACCEPT POWER SERIES EXPANSIONS

Let us consider Reiner-Rivlin fluids having rheolegical equation

T'=p, I+ py D+ p D? (20)
where p,, py, pe arefunctions o the invariants of the form

r .8 1
BE = Z*‘L’:rstfl 12 13 (2])

rst

For incompressible fluids » must be zero. Let 4 .,: = Brs:

¢
so that BE = ZBI; st Izs I, (AT =0, 1, 2) (22)
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From (4), (16)and (22), we get
| T s+1 ¢t T g t+1
b= — 2‘/_/_8135 Iz 13 -+ 3 ZB;),S; 12 13 (23)
st 8t

Thus for incompressible fluids of type (20), (21)and (22), we have
(i1)there are no restrictions on B, These can be positive or negative,

(1t) Bia=0 for odd values O t,
(111) Bag =0 for even values o t,
(1w) Big >0 if siseven,tiseven,
- () Big <0 if sisodd, t is even,
(vt) B2 >0 if siseventisodd,
and (vit) Bag < 0 if sisoddt iseven.

These give a complete set o restrictions on the coefficientsfor incompressible fluids
characterised by (20).

A method for finding restrictions on the material constants is illustrated bdow by
considering a tenth order fluid. This procedure can be extended to any order incompressi-

blefluid.
The constitutive equation for a tenth order incompressiblefluid is given by
g =(—0+ ML+ M L% 4 A 12+ ML+ ML+ Mg Ly + A L?
7\8133 + Ag 1213 + )‘1012]32 AnIzBIs /\12122 132 + /\1312313)5ij
:‘: (paly + pols® + paL® + py It + ps Iy + pels® + o I3 + pg Iyl
polo I T pigIy* I3 + pun 1% Iy) €3
+ (v 1 -SI- volo® + vy ¥ + vy It + ws Iy + v 1
A vy Ig Iy + v I 12 4 vy 1,2 15) e €4 (24)
so the dissipation function is
b= (1 Ly + pal® + pa B2 + g I* + ps Iy + pe I3 4 pr [5°
+opg L Ly + o L I T pyg I? Iy + pyy 12 1) (— 2 15)
+ Iy A+ vl + v P vy It v Iy + v I
vy I Iy + v L T2+ 0, 1,2 1) 31, (25)
=— 2y Ip* — 2y Ip® — 2y [t — 2, 1% + (— 2p5 + 3v1) I, 1,
:‘:(—*2#6 4 8y ) I L% 4 (—2p, + 3ug ) I I3 + (—2pg + 3vy) I2 I
(—2p, + 3vg ) I? I + ( — 2pgo + 3vg) Io? Iy + (— 2p0y + 3wy ) I35 (26)
Now I, is negative and I, can be positive or negative. Thusif ¢ is to be non-nega-
tive, we get the condition
<0, pg >0, py <O, py >0, 2p; = 3v,
2ug — 3vy > 0, 2p, = 3vg, 2p3 = 3vs,
2ty — vy <0, 2py = By and 2p;; = 3, (27)
(27) gives the restrictions on the thirty three material constants which are involved
In the constitutive equation (24).
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