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The problem of flow of an elaatico-viscous liquid past a hot vertical porous flat plate has
been considered by takinginto account the effect of free convection whena body force
'g actsin a direction opposite to that in which flow takes place. Numerical calculations
have been made to study the effect of free convection and elasticity of the fluid on the
fluid velocity. Thefluid velocity and the skin-friction both increase with the Grashof number.
The skin-friction is not affected by the elastic elements. The fluid velocity increases with
the relaxation time but decreases with the increase in retardation time.

In recent gears, the study o free or natural convection phenomenon has gained con-
Siderable importance in view of its application in the fidd of aeronautics, atomic power,.
chemica engineering and electronics. Although a number of studieson natural convection
flowand heat transfer of Newtonianfluidshave beenreportedinliterature. Littlework seems.
to have been donein case the fluidisnon-Newtonian. Theaim of the present investigation
iSto study the problem o flow of Oldroyd elastico-viscousliquid past a hot vertical porous
flat plate by taking into account tbe effect of freeconvection when a body force ‘g’ per unit
mass is acting in the negative X-direction parallel to the plate. Recently, the author’
has studied a similar problem with Rivlin-Ericksen? elastico-viscous liquid.

RHEOLOGICAL EQUATION OF STATE

The constitutive equations for the Oldroyd® B liquid is given by
(14X, D/D, ) p'i*t = 2n_ (1 4 A, D/IN) €'* (1)

Pir = — PYix + Pik (2)

where p;; iS the stress tensor, Ay, A arethetimes o relaxation and retardation res-
pectively, ei* is the rate of strain tensor, » isanisotropic tensor, 7, is the limiting
viscosity at small ratesd shear and gy, isthe metrictensor of afixed coordinate system x .
D/D¢ denotes convected differentiation of atensor quantity in relation to the materia in
motion and for a contravariant tensor b* is

(DDt)btR — 85“‘;’(’3: + M abt'k a'Em =l b{m ov k j,-’ rm — r(')m)’.‘ a_.t._a'. abm (3)

where ™ is the velocity vector. The material defined by equation (1)is essentially a
liquid, and the physical model issuch at A >A. As)A; and A, tend to equality
the material tends to become exactlv a Newtonian liquid of constant viscesity .. In
mobileliquids A, and A, are small fractions of a second.

FORMULATION AND INTEGRATION OF EQUATIONS

Takingthe X-axisalong the plate and Y -axisnormal to.it, the equation of continuitv is

afPU)al + 3{,01’)3'{83/ =0 (1)
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. The momentum equations are

p{udu/ox 4 v ou/dy} = —iplex — pg + 8p'=/ox + op'*¥[9y, (5)
pludv/oa o avjoy) = — eploy -+ oy’ «/or + ap'wiay T olu.D)/ey, (6)
where p, is the coeffisent of bulk viscosity and
L =vi;

Since the plate is infinitely long all pbysical quantities, excep® pressure p, depend on y
enly. Following a previouswork by the authort, the equations of motion and continuity
reduce to

pvdu/dy = — 3p/dx — pg -+ dp'*|dy (7)
prdv/dy = —2ploy + d(pl)/dy~+dp'vv/dy (8)
and d(pv)ldy =0 (9)

In accordance with the usual practice in free-convecticn, the density is treated to be a
variable only in forming the buoyant ferce p B¢ 60 , otherwiseit isaconstant. S isthe
co fficient of thermal expansionand 6 =T — T, , T and 7, are temperatures at
any point and at far away fromthe plate respectively. Consdering this fact, equation (9)
gives

v == constant = v, (10)

and eguations (7) and (8) reduce to
pv, du/dy = pBgd T dp'=v/dy (11)
0 = - 9p/ay + ap'vy dy (12)

The constitutive equation (1) now gives

Pz + Al[ v, dp'=/dy — 2 du ‘dy p’I!/J: — 2, Ay (du'dy,? (13)
pay 4 A [ v, dp'®|dy — du/dy . p'vv ] = 1, Lm dy + Ay v, du?/dy® I (14)

P N v, dp'v [dy = 0 (15)

Equation (15) shows that 'y, =0, isa particular solution d this eguation. Hence
putting ¥ = 0 in (14) we get

P+ Ao, dp'®dy =7, [ du/dy + Ay v, d?u dy? 1 (16)

and op/ey =0 (17)
Elimination of ¢ between (11)and (16) gives

M, AV, /Ay - (n,— Xy pv?) d2u'dy® — pov, duldy + Ay v, pyBdb/dy + pBgd =0 (18)
Thbe equation of energy is
pey, d@ (Zy - I{Jzﬂd?j_? + j)r.‘r.’f(h; (]y . (]9)
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where ¢ and K denote the specific beat and thermal conductivity of the fluid respectively.
Neglecting visco-elastic energy dissipation term in (19), which is justified for dow motion
asin the case o free convection flows, we get

pcv df'dy = Kd6'dy? (20)

Equations (18)and (20) are to be solved under the boundary conditions.

. 8:8_) at y =0 j
e (21)

u->U, 6 >0 as y—>oc0

u=»I(0

Solution of equation (20) is physically possble only if v, is negative i.e. there is Aud
suction at the plate. Taking

v,=—20a, (a>0) (22)
where '’ isaconstant of the dimensionscf velocity, from (20) we get
6 =6, exp. [ — pac y/K] (23)

Elimination o 6 between (18)and (23) gives
K, d3u/dp® — (l ﬁi.'l)r'lg'u_'cluz — duldn = UG (! —}—PKI) exp. (— Py ), (24)

where

Ky = A\ po¥/y, , Relaxation number
K, = ), pa®/n, , Retardation number
n = paym, , hon-dimensional distance
G = Byn, 6,/pUa? , Grasbof number
and P=en/k , Prandtl number

The solution o (24) is

mym ‘ ey

P -
u=A-+Be Y fce 2 _UGQ 4 PK)e ,-{Kﬁ P8 4 (14 K,) P*— PE (25)

?Nal-] s
= |0— Ky {0 —Kyr + 4,
My )

which showsthat for all valuesof K, and K, (bothdf them being small but positive)
m =0 ; my<O (27)

From the condition u—» U as n > oo , weget B=0, otherwise “~ will diverge to

infinity and A = U.

Since u = 0 at » = 0, we have from (25)

|2, (26)

wn AT ms ~Pnl/
ailf=l—e 2 o (1 +PI11) [e T e ’?J/-* (KPS + (1-K;) P—P }(28)
If G =0 and K, = K,, the solution (28) reduces to the familiar solution of Meredith and
GriffithS,
The skin-friction =, at the plate is
7, = palU(1 +G/P) (29)
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DISCUSSION

In Table 1, the calculated valuesdof «/U are given for fixed values of K, and K,
and various valuesfor G and P. The fluid velocity increases with the Grashof number.
Thisseemsto be physicaly plausiblefor an increasein Grashof number impliesan increase
in buoyancy forceleading to an increase in fluid velocity. From Table 1 we can aso con-
cludethat thefluid velocity decreaseswith the increase in Prandtl number.

Table 2 givesthe calculated valuesd «/U sbowingtheeffectsd elastic numbersonthe
fluid velocity. It can be seen that the fluid velocity increases with the relaxation time
but it decreases with the increasein retardation time.

The expression (29) fcr skin-friction shows that it i8 independent of the elasticity of
the liquid. It increases with the Grashof number but decreases with the increase in

“Prandtl number.
TaBLE 1

Errect oF @ AND P ON FLUID VELOCITY

1, \G 100 500 1000 P
0-4 73-68 366-88 733-38 0-5
i 33-14 164-18 327-98 1-0
5 43-70 216-02 431-42 1-0
1-0 111-00 55220 1103-70 0-5
. 41-70 20070 400-70 1-0
2.0 101-08 501-76 1002-60 0-5
27-73 135-01 269-11 1-0

TABLE 2
EFFECT-OF ELASTICITY ON THE FLUID VELOCITY

K:L\K2 0-2 0-4 0-6 0-8
0-1 42-67 57-31 62-91 69 - 66
0-3 4953 51-61 52-98
0:5 4040 41-70
0-7 40-07
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