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The thermal instability of an incompressible fluid shperical shell heated within when the fluid
absorbs and emits thermal radiation is considered. Two asymptotic cases of the radiative

. transfer equation (i) when the fluid is optically thin and (ii) when it is optically thick have been
examined. It is observed that radiative transfer for the transparent medium has a stabilising
effect on the fluid motion, whereas for the opaque medium the fluid behaves like the non-
radiative case.

The problems on the thermal instability under a number of externally impressed condi-
tions have recently been studied by many workers. In most of the problems the origin of
the instability is a potential unstable arrangement of the fluid resulting from a prevailing
adverse temperature gradient. The earliest theoretical investigation by Rayleigh in 1916
relates to the behaviour of a fluid enclosed between two parallel plates heated from below.
This problem was later studied by several workers viz. Wasiutynski', Jefferys & Bland?
and Chandrasekhar.? The formulation of the last two differed in the choice of the dependent
variable. Jefferys and Bland? obtained the solution by taking temperature as the dependent
variable while Chandrasekhar?, by taking velocity as the dependent variable. Here the.
problem is solved by taking the radial velocity as the dependent variable. Goody* was first
to study the thermal radiative transfer effects introducing these in the classical problem of
Rayleigh or Pellew and Southwell. More recently Murgai & Khosla’® have examined the
effect of radiative transfer in case of an ionised medium in the presence of a vertical magnetic
field which is the extension of earlier works of Goody? and Chandrasekhar®. It is of
interest to examine the radiative transfer effects in problems of stability relating to other
geometries because of their Astrophysical and Terrestrial significance. An incompressible
fluid spherical shell generating heat from within is considered here. The problem has been
solved for the two following approximations of the radiative transfer equation, (2) appro-
priate to @ transparent medeum—The treatment of the problem has been restricted to a
case in which we have assumed temperature gradient 8 to be constant. It is not possible
to establish the variational principle for the variable B, hence the above assumption is
made. However, it will be appropriate to remark here that the effect of the variable nature
of B has been analysed by Murgai & Khosla® in case of fluids confined between two parallel
plates showingthat it does not alter appreciably the value of the critical Rayleigh number
and () appropriate to an opaque medium—The radiative transfer behaves like mole-
cular conduction and its effect can be taken into account by modifying the thermal
diffusivity, However in this case there is no need for any assumption in regard to the
temperature gradient B.

BASIC EQUATIONS

Consider a homogeneous, incompressible fluid spherical shell of outer and inner radii

R and R, respectively, under the effect of its own gravitation and with a uniform distri-

bution of heat sources e which maintains a radial temperature gradiant in the fluid.

The fundamental equations of -continuity, momentum, energy and radiative transfer
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where U i the velocity vector, p the density of the fluid, P the pressure, »the kinematic
viscosity, V the gravitational potential, 7' the temperature, K the thermal diffusivity,
Cp the specific heat per unit volume, @ the radiative heating per unit time, I the intensity
of radiation at any point, £ the absorption coefficient (inverse of mean free path of radia--
tion), B the Plank function, S and ware the elements of length and solid angle respectively,
« the coefficient of volume expansion and & the gravitational constant. The temperature.
distribution is given by the energy equation in the static case. = '
(&, 2 4T, | | S
where the quantities with subscript ‘0 refer to the equilibrium or static cage. . .

"~ "We'solve (8) by considering two asymptotic cases (7) when the fluid is optically thin
and (¢4) when it is optically thick. The two cases are characterised in terms of mean.- free

path of radiation and are given by
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The temperature of the outer surface has been assumed to be zero aud g0 doés” not _ contri~
bute to @ in 9(s). Thus ®, may be written as
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With the help of (10), (8) can be solved - as
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where : .
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o being Stefan’s constant -

In evaluating the temperature distribution, the two constants of integration have been
determined from the condition that T', is zero at the surface and is finite at the centre.
The equation (8) is linearized by assuming that the difference between the temperature
at the centre and the surface is not large. This has been discussed in detail by Goody*.

Now using Boussinesq approximation for the density variation, the linearised equations
of the problem may be written as -

S =
diveu =0 (12) -
N > —> ‘ \
T3 = — grad (p/p°)+vv2u+70r (13)
0 - > ‘
——=KV20+28 u.r + ¢/C, e (14)

where ¢, p, 6, 4 are the disturbances in temperature, pressure, radiative heating
and velocity respectively. These have been assumed to be small
4a -
and LY = Tw p Gua
Assuming a free surfaéé both at r =7 < 1 (a dimensionless radius) and r = 1, the boun-
dary conditions to be satisfied by the solutions of equations (12), (13) and (14) will be

20 U, : : (16)
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MARGINAL STABILITY
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Using the property of spherical symmetry we expand U.r and 0 in spherical harmonics
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and P are associated Legendre Polynomials.

Ehm.matmg p from (13) by taking its curl and using (12) and (16) we have

D, v D — p* B 4 -
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where
e 2 4 Ig+1n. .
=g+t 5@ = 7

Also substituting for ¢ in terms of 6 and usmg (16), the energy equation (14) in the two
approximations can be written as :
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The boundary conditions (15) can be expressed as

W=26 =0 )
de abr =1 and r= 7 ‘ (20)
- ‘
The equations of margina] stability are éharacterisé}i’i by —gt—z o. Thus putting
p* = 0, in (17), (18) and (19) and eliminating § from these, we get the equations of
margmal stability »
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where O} = 273 - and 1s caTled the Rayleigh number. Its characteristic values -

determine the margmal state B and 2 ha,ve been assumed tobe: constants. For the
opaque case B has been replaced by B, . -
\ Equa.tlons (21) to (23) along with the bounda,ry conditions (20) can now be solved by
~ variational principle. ;
Mult1p1ymg (21) and (22) by 3F and using (23), after integrating by parts,.
we geb ' o



Baur & Anusa : Radiative Transfer Effects on Thermal Stability 227

1T [ dF \? o
[ = () +rarvm]a+a fara
) ) |

L/

L (1+1)0 = : - (%)
2 .
fn'rz(D;W)dr ' ‘ EFR<<1
and R
1 2 o
fn,[rz(%)-l-l(l—f-l)ﬁ'z]dr (14+x)
It+1 ¢ = - - (25)
RTINS,

Now C; has been expressed as the ratio of two positive definite integrals and
it can be easily shown that corresponding to any arbitrary variation 8 W in W compatible
with the boundary conditions, the variation 8 C; in C; is identica.lfy Zero provi-
ded W satisfies the differential equations of the problem.

Since the form of (23) in this case agrees with the nen-radiative stability problem studi-
ed by Chandrasekhar® we, therefore, can start with the same form of the function for ¥
without any loss of generality for the radiative case as well. In this way an approximate

valueof C; . can be found by minimising the integrals in (24) and (25) with respect to

the parameters contained in the function for F. The accuracy of this minimum value
can be increased by increasing the number of these parameters in the trial function.
However, it is found that only one or two parameters are sufficient for a fairly accurate
value of the Rayleigh number.

So, we put
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§i + 4,1+ denotes the cylinder fﬁhcﬁion of order 1 4 }, J; + 3 is the Bessel function

of order ! + % and «; is its jth zero. 4; s are the various variational parameters. " The
value of the Rayleigh number can now be computed which for the first approximation
comes out to be a
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It is evident that in the limit of x or X - 0, equations (28) and (29) reduce to
Chandersekhar’s® result, Tables 1 and 2 give the values of (O for A = 10 and A = 102
respectively for the transparent case. In both these tables various vlues of I and 7
bave been considered. The values of C; /C% (for A = 10) have been shown in
Table 3, whére C° is the value of the Rayleigh number obtained by Chandrasekhar®.
Fig. 1 and 2 are the plot of log C; vs. [ for A= 10 and 10% respectively. The various
values of 7 have been shown on the curves. These calculations were performed for
‘the transparent case only. In the opaque case the values of the Rayleigh number can
casily be obtained from those given by Chandrasekhar® by multiplying them with
(1 -+ x. v ‘

This variational principle can similarly be established even when both the bounding

surfaces are rigid or when one is rigid and the other is free.

CONCLUSION

The numerical results show that in case of transparent medium, for different values of
" Ain increasing order, the instability sets in at higher harmonics. Thus it can be concluded
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Fige 1—Plot o;f log Cp vs I for A == 10. Various curves are Fig, 2—Flot of log Oy vs 1 for A=102, Various curves
for values of v are for values @
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hat radiative transfer will try to damp out any disturbance of the fluid which may result
due to heat transfer. In other words radiative transfer has got stabilising influence on the
fluid. With the increase of Afrom 10 to 102 this influence is also increased (Tables 1 & 2).
This is also apparent from the. ratio C [/ C° where C° isthe value of Rayleigh number
in the absence of radiative transfer. The fact that the ratio decreases with, the order of
harmonic, shows that the effect of radiative transfer reduces for disturbances of higher

harmonic modes (Table 3).

Tasre 17

THE VALUES OF (j TOR DIFFERENT ! AND 3; A = 10

y
l 0:2 0-3 0-4 0-5 0-6 0-8
1728966 10%  4-1941x10*  6-9463x 10°  1-3884x10° 3-4498x 105 1-0917x 107
2 *2-2683x10* *2-7120%x10* 3-7893x10*  6-4932x10* 1-4793 x 10° 4-1273 X 108
3 2-7042x10*  2-8762x10* *3-4516x 10t  5-0492x 104 9:9642 x 10* 2:0734x 108
4 3-4918x10*  3-5524x10* 3-8753x10%* *4-9700x 10* 8-4404 x 10* 1-3754x 108
5 4-5444x10*  4-5704x10% 4-7387x10* 5.5684x 10% #8.2621 x 104 *1-0352 X 108
6 5:9719x10*  6-5374x 10* ‘8:8071x 104 8:4976x 105
7 7-9689 x 104 9-8918x 10¢ 7-4393 X 108
8 1-1467x10° 6-8398 x 105
9 1-3536x 108 6:5339 <105
10 1-6129 x 10° 6-4372x 105
1 6-4957 x 108
12 6-6845x10°
13 P 6-9852 x 108
14 7-3954x 10°
15 7-9056x 108
*These are critical Rayleigh Numbers,
TaBLE 2
THE VALUES oF (j FOR DIFFERENT [ AND 7; = A = 102
7
4 0-2 0-3 0-4 05 0-6 0-8
1 2-3802x10° 3-3523%x10° 5-2871x10¢ 9.7383x 10° 2-1058 x 107 3-2041x 108
2 *#1:7026x10°  2-0087x10°  2:7095x 108  4-3341x10¢ 8:6984 < 108 1-1949x 108
3 1-8249Xx10° *1-9306x10¢ *2.2678x10°  3-1448Xx 108 5-5238 x 108 5-8836x107
4 2-1054x10%  2-1382x10°  2-3060x 10% *2-8456x 10° 4-4018x 108 3:8024x107
5 2-4445x10%  2-4573Xx10° 2:5339x10°  2-9311x 108 3-9900x 10¢ 2-7727%x 107
6 2-8609x10°  3-0805x 10° *3-9094 x 10¢ 2:1943x 107
7 3:3868x 108 4-0164x 108 18441107
8 4-2472 % 108 1-6215x 107
9 45687 x 108 1-4768 x 107
10 4-9618x 108 13837 107
11 1-3252x107
12 1-2925x 107
13 *1-2787x 107
14 1-2808 ¥ 108
15 1-2949x 107

*These are critical Rayleigh Numbers,
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TaBLE 3

TuE RATIO O] /C°; TOR DIFFERENT [ AND 93 A = 10

n
l 02 0-3 04 0-5 0-6 0-8
1 55586 4-9325 4:1298 - 3-3152 24589 1-4016
2 3-9739 3-8140 3.4732 - 2-9772 2-4120 1-4992
3 3-0445 3-0111 2-8859 2:6243 2-2523 1-3823
4 2-4941 < 2.4877 244450 - 2-3159 2-0707 1-3685
5 2-1426 21447 2+1278 ... 2-0832 1-9156 1-3521
6 1-9001 1-8721 1-7810 1-3344
7 1-72156 1-6672 1-3164
8 1-5726 - 1-2979
9 1-4945 1-2789
10 - 1-4299 1-2612
1 1-2437
12 1-2270
13 - 1-2112
14 1-1970
15 1-1838

As far as the optically thick medium is concerned it is found that for all values of y,
the instability sets-in at the same modes at it happens for non-radiative case.

Tt may also be mentioned that the earlier conclusion drawn by Chandrasekhar3
is that the pattern of convection which manifests itself at marginal stability shifts
progressively to harmonics of higher order as the thickness of the mantlle decreases is
also true when the effects of radiative transfer are taken into account.

Tt is observed that in case of infinitely.thin and infinitely thick optical media the prob-
lem of instability reduces to that of non-radiative case considered by Chandrasekhar.
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