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It has been shown that the se of a polynomial profile for the temperature distribution in the
case of thin cylindrical tubes is justified in the Goodman’s technique of heat balance integral.
The above technique has been used to obtain an approximate solution to the problem of mel-
ting (solidification) in a tube which is subjected to a constant heat flux at the inner surface
while its outer surface is kept insulated. The temperature history and the melting rate are
studied for the time during which the melting proveeds: Lighthill’s technique for rendering
approximate solution uniformly valid has been used and the first three terms of the series
solution have been expressed in terms of an intrinsically small psrameter.

NOMENCLATURE

¢ = inner radius of the tube

b = outer radius of the tube

¢ = dimensionless length = _b_;—_a;

¢’ = specific heat :
d = ratio of the outer radius to the inner radius = 1--¢
k= thermal diffusivity = K/p¢’ ' '

K = thermal conductivity

L = latéent heat

Q@ = heat flux

r- = radius of the tube

§ = position of the melting front

t .= time

is = transit time

tm = melting time

T = temperature

| ‘T, = initial temperature; the melting temperature
’ corresponds to 7'.= 0

L R kT,
#; = dimensionless temperature —-m
. . . L. - T 2
#y = dimensionless temperature = T
v, w = thermal energy defined in (50) and (51) -
2 - = dimensionless radius = Ia——ca
§ = penetration depth

¥ = dimensionless penetration depth = ”
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e = dimensionless length representing the position of the melting front
7 ) 0 i P k -
+ = dimensionless time = ——2&5-2&")
. a? ¢
‘ : i 3 k2t
¢ = dimensionless time == e

&, p, v= dimensionless parameters defined respectively

Qac K, T, k,
by 2K, T, ° p Lk, and s
A = dimensionless number = %—
. . K,T,
@ = dimensionless temperature = 22
Qac
19 .
¢ = thermal energy-=J‘ (14+cz) bde
1
p = density
Subscripts .
1 —  quantities in the liquid region
2 —  quantities in the solid region
0 —  initial value.

The heat conduction problems accompanied by the change of phase are non-linear
because they involve a moving boundary whose location is'not known a priori. ~ Closed
analytical solutions for such problems are difficult to obtain, A few exact solutions
mostly pertaining to problems in plane configuration have been dealt with Neumann &
Stefan? for prescribed temperatue conditions on the wall. For a given heat flux at the
surface, Evans et al2 have obtained a solution in the form of Taylor series.

Since problems involving change of phase are non-linear because of release or absorp-
tion of latent heat at the moving boundary, a few of them have also been worked out by nu-
merical methods. Landau® has solved a one-dimensional plane melting problem by using.
a finite difference step-by-step method. Allen & Severn® have applied relaxation method
to study the unidimensional solidification of a semi-infinite plane region and the inward
solidification ef circular cylinders. ‘

Quite recently certain integral methods suggested by Biot?¢ and Goodman’ have
been applied to both linear and non-linear problems. Biot’s method known as ‘variational
‘method’ has been applied to problems where non-linearity arises because of temperature
- dependent heat transfer properties. Biot & Dughaday® have used the technique in treating
an ablation problem of half space subjected to a constant rate of heat input at the melting.
surface. Goodman has applied the heat balance integral method in solving a number
of melting problems in half space. The method has also been used by Goodman and
Shea? in solving the problem of melting of finite slabs.

This paper is an attempt to solve the problem of melting of cylindrical tubes by making
use of the technique of heat balance integral. The study finds application in some heat
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transfer problems suggested in the manufacture of metallic tubes and refrigeration techno-
logy. In the problem considered here a prescribed heat flux is applied at the inner surface
of the tube while the outer surface is kept insulated. It is required to study the propaga-
tion of the melting front and the temperature distribution in both the melted and unmelted
regions, A quadratic temperature profile is used for the temperature distribution in each
of the above regions, While dealing with problems with axial symmetry, Sparrow! has
hinted that the use of the polynomial profile in integral methods leads to inaccurate
results. This anomaly was later explained by Lardner & Pohle!! who argued that solution
obtained by the use of above profile does not tend to the proper form of steady state solution
for large values-of time and that the volume changes are not the same for equal increment
Ar in the radius r of the cylinderical tube. However, these arguments do not preclude
the applicability of the polynomial profile to the case of cylindrical tubes whose thickness
is small in comparison to their radius and for which the steady state is far off (as in the
case of melting with small heating rates).

The problem has been solved in three steps. Instep 1, an axially symmetric problem
in ordinary heat conduction is briefly discussed by the use of a polynomial profile and results
compared with those available in literature. A good agreement is found between
the two results thus justifying the use of polynomial profile in thin annular regions. In
step 2 the temperature distribution in the tube at the time of melting has been obtained
by the application of the heat balance integral method. ~This serves as the necessary
initial condition for the melting problem. Step 3 deals with the statement of the melting

problem and its solution. Finally, the results have been discussed and depicted/graphi-
cally.

STEP. 1. Heat conduction problem—The temperature distribution in an infinite hollow
cylinder which is subjected to a constant heat flux at its outer surface while its inner
surface is maintained at zero temperature is considered. The equations governing the
heat flow in the cylinder together with the initial and the surface conditions in the nondi-
wmensional form are given as

o0 1 2 86

% =1t ‘59;{ (1 +cx) 2o ¢ (1)
2

o =1; z=1,6>0 @)
60=0; t=0,£>0 (3)
g =0; £=0 4)

Let use suppose that at any instant of time the thermal layer has grown to a thickness
20
&' so that for ¢ <1 — &, § = 0 and 2 = 0. Integrating (1) w.r.t. z betweenz = 1

and # = 1 — & the heat balance integral can be written as

(Lo — ) 2 01 —¥,8)— (1 + ) 2 0(1E) = Tt (1+o—¥)o(1—') F o

Using the boundary conditions at #==1—3$’ and z=1 and integrating the resulting
equation w.r.t. £, we get

¢ = — (1 + ¢) £ 4 constant. (6)
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Let us assume that 8 has the form

(1-—'8'-— 2 ) _ .

b= 25

Thus 8 satisfies the boﬂndary conditions at #=1—3’ and z=1 and the- corresponding ¢

is given by : . _ - ,
. . 8,2 : E . ., -
¢=—_—«2T{4(1+c)———08} : - 8)

As the thermal layer reaches the inner boundary =0 the boundarj; condition at
(3) has to be satisfied. The temperature distribution and the transit time at that instant

are given by
22 o
L S ®
Is = -_4_4:&._ o | |
, S=gi+e (10)
When further heating is continued the temperature of the body rises and -we have
to find out the temperature distribution from (1) subject to the boundary conditions (2)

and (3) and the initial condition (9), the origin of time being ¢ =t5 . The heat -balance
integral approximation is introduced again with a quadratic temperature profile. Thus

the temperature distribution in the cylinder is obtained as . L,
4 1+e g 24 ¢ UL
— 2_ il L e . :
. 9 = x-+(2% — 2) [ - exp$ §150 (E—1ts )} 5 ], ts <§ o (11).
From (11) the temperature at the outer surface of the cylinder is giVen by
N (S ' (l_f_g_t (1+8d) @—1\)
Q@ 2 7 P BFod)d'—1)\a®? - 24d )§
(14 3d) (&' —1)2 kgt
g < 12

The temperature time history at the outer surface of the cylinder from the exact
solution is given by'?

-

K,T 2
Ky g > o (5

EACERYCS

al) Z,
To (B Vo ) — Yo (Ba) Ty (055 ) i
Bn {J02(ﬁn)+J12(d'ﬁn) } - : ( )

Where /3,, Qre tﬂe To0ts 6f
To(B) Y2 (@B)—Yo (B) T2 (@'F) = 0
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The results given-at (12) and (13) have
been evaluated and depicted -graphically
in Fig. 1 for ¢=0-1 and ¢ = 0-2

A good agreem-nt has been found between
the two results, difference being of the
order of about 3%, for ¢=0'1 and about
6 % for c=0-2. It is concluded therefore,
that the use of a polynomial profile in thin
annular regions is justified.

STEP 2: Premelting temperature distribu-
tion—Consider a hollow cylindrical tube of
inner and outer radii @ and b respectively
held initially at a constant temperature
—T,. Let a constant heat input @ be then
given to the inner surface. The flow of
heat is governed by ‘

0 o0 .02 .03 B +05 +06 07

fa T, ky & ( T
a? -6—32—1-——(7—3);(1<7'<b,t>0
Fre. 1—Temperature - time history at the outer ot roor or
surface of the hollow cylinder. Dotted curves : (14)
represent the solution obtained by integral me-
thod and continuous curves represent the exact

solution. v
The boundary condition to be satisfied at the inner surface is* » -
aT, .
=2 __ 09 . r= 0 15) .
2 ; r=a, t> (15)

Let us now define.a quantity 8(¢) called the penetration depth, such that for r>a--8

the tube, for all practical purposes; is at the equilibrium temperture and thereis no

transfer of heat beyond this point. Hence at r—a--8, the following conditions must
be satisfied .

Ty =-— T, \ (16)
T, '
S =0 ‘ (17

Initially at ¢ = 0,6 (f) =0

~where- :
P S . ) a3

N

. The technique of the heat balance integral is now introduced to obtain the temperature
distribution T, and penetration thickness §, which satisfy the boundary conditions (15)
to (17).

Integration of (14) wrt. r fromr =a to r = a + 8 gives

kzaQ d02 dé : 18
K, =-7lt—+(a+8)T°7t°—~ (_ )

02=f r Ty dr S o (9)

g . X . .

*The problem of solidification can be treated similarly ‘by chénging the sign of Q.

¥
‘\
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To obtain the value of 6, we assume that T, can be expressed by a simple polynomial
of the form

Ty=A4; + Ay + A3 1* (20)
where 4: may be functions of time. (20) with (15) to (17) gives
Q 2
Ty =—T, + 21{—:8§8—~(r—a)} @1)
With the form of T, given by (21), (19) gives
2
02=-—8(a+%)1’0—[—~8—(4—g4%;—8£ (22)

(18) and (22) together give
k@  3(8a + 33)Q dd
K, — 24 K, dt
This differential equation together with its initial condition is integrated w.r.t. ¢
directly to give

(23)

3% (4a + 3)
24

Till the thermal layer grows.to the outer surface the temperature distribution is
given by (21) and (24). However ,when & becomes equal to (b—a) we have to specify

different boundary condition at 7 = b. In this paper we consider that
a7,
or . :
1f t,, is the time when melting begins at r=a and #5 is the time when & = (b—a), then

tm and tg from (21) and (24) are given as

fegat = (24)

=0 ; r=5b : ' (25)

1 (2K, Ty \2 g 3K, T, } _
lcgat,n:—ﬂ—( G ) { gt (26)
)
bt = g 6 —aP{ 6 — o) +da) @7
1f -——_(;; ;)Q = «, then melting will not begin at the surface before the thermal
2 *0 i

layerr eaches the outer boundary r = b provided o < 1. In the problem discussed here
we are interested in such heating which would satisfy- this condition.

When 8=(b—a), the temperature distribution from (21) is given by

— — a2
1= —1,+ 00— e <<= @9
After the thermal layer has reached the outer surface, the problem is to determine the
temperature distribution which satisfies (14), the boundary conditions (15) and
(25) and the initial condition (28). The temperature T, is again assumed to be
quadratic inr. Proceeding on similar lines, the heat balance integral is derived and solved.,
The temperature distribution T'; is given by :
] }2 2a Qk,

b—a T () B <t Stm (29)

| (b—a)@
Ty=—Ftgg, {17 E—a
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The time t,, when melting begins at r=a is obtained by setting T, = 0 in (29) and we

get
_b—argl e e+
= gttt gt (80)
The temperature distribution at ¢=¢,, is given by ,
___ (b—a)@ r—a \2
L= (=) D

STEP 3: The melting problem and dts solution—As the melting temperature is reached
at the surface r=a, the solid begins to melt and we obtain two distinct regions characteris-
ed by the melted and unmelted materials. These regions are denoted by subscript 1
and 2 respectively. The equations governing the flow of heat are given by (14) and its
analog for the region 1, together with the following initial and boundary conditions:

Ty=0 ; t=ty , s=0 (32)
Tzz——;‘#%{1—(1——2—:%)2§;t=tm,s=0_ (33)
T, =T,=0 sr=a-s , t>tn e
K, 831;1 aszaaif-=—~Lp2$~;r=a+s,t>tm (35)
Kg—igl;-—: 0 ; r=0b ,t>1tn (?;6)
Kl—aa%—=——Q S r=a,t> b | (37)

Before proceeding to solve (14) and its analog for the liquid region together with the
boundary conditions (32) to (37), they are made dimensionless with the help of the
following non-dimensional variables:

—6 __ ky(t—tm) T, K kT

S Uy == —(— , Uy = 55— € == —
ac ’ a?® 2T T, K, k7T, ° ac

-3

X =

Introduction of these variables into the governing equations reduces them to the .

following form;

R —a%{(l+cm)%%1—}= (1+cx)%u—’; 0<2<er>0 (38)
=0 ;7=0 ;¢e=0 (40)
Uy = — a {1 —(1—2)%} ;7=0,e=0 (41)
Uh=u=0 ;z2=¢,7>0 | (42)

duy duy 1 de

. "o TR e dr T >0 )

v
e'
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au;

% =0; z=1 ,7>0 ‘ | ' (44).
8u1 . 20 . _ . R
== o= 3 =0 51>0 (45)

(42) expresses the fact that the temperature at the melting front is equal'to the melting
temperature and (43) gives the heat balance across it.

As done earlier, the technique of heat balance integral is applied to (38) and (39).

Quadratic profiles are assumed for the temperature distribution for both melted and
unmelted regions. This leads us to the following differential equations inT

N

dw dv de
n '(IT+#3;+(]+05)7;':2H“ | (46)
(8 + 3ce)<? Z—Z) = 20(12 + 8ce + c%?)e® — 22111-(1 + ce)w (47) ’
(1 —€)%(8+5c - 3ce) 'g; = —24(1 +ce)v (48)
The initial conditions to be satisfied are
e(r=0)=0;w(r=0)=0;b(7=0)=———8———+1—759—oc~ (49)

_’The quantities v and w occuring in the above equations are given by the following
relations :

1
v = J. 1 + cx) u?dx . : (50)
w = f (1 + cx) uy dow ‘ , . (51)
3 : : :

and represent expressions for the thermal energy for regions 2 and 1 respectively. These
equations may be solved as under

 Since (46), (47) and (48) are coupled non-linearly their. solutions cannot be obtained
directly. In such situations the solution is expressed in power series in assending powers
of some parameter. Since a by definition lies between 0 and 1, the series solution- is
expressed in powers of .. We assume the following series for e, w and v:

(U . T 22 .

¢ (copy,t) =€ (Gpwr) + ae (epy,7) +ae (cuwr) + .. .. (52)
' (0) m 2 (2

w (c,%,p,v,7) = W (C:I‘}V’T) + aw (c,p,,v,-r) + o w (c,,u,v,'r) + ... (53)

(0) 1) 2 (@
v (c’a”"’v,‘r) ='U (c’”,v”r) +av (C’F’V’T) + 4 ?) (C’}L,v,f) + . (54)
Substituting for e,w and v from (52), (53) and (54) in (46), (47) and (48) we may obtain
“solutions of different orders, The zeroth order solution is given by

(0) (U 0) .
e =0; w =0and v =0 ° (6b)

-



Anuss & KuMag : Melting of Thin Oylindrical Tubes 211

and is in conformity with the physieal assumption. The first order solution is likewise
given by :

(M ‘(l) {T;__ 8‘+56’}T

€ =—pv + 2 o0
M 84 B %r
A TR 2 -y 50) (56)

(n
w =0 : J

This solution is uniformly valid and well behaved. However, when second order solutions

are calculated terms of the form r exp ( — TITE- 2_4 ;c ) and 72 exp ( — _8—2§T ) are
‘ ¢

@ 2
obtained in v. )The effect of these terms is to cause humps in the graph of 'v( )118 T or
essentially v vs 7. The solution, therefore, does not behave properly and is thus not
uniformly valid. To avoid this difficulty we resort to Lighthill’ss technique for “render-
ing approximate solutions uniformly valid”. The essence of this-techniquieds o expand
the independent variable in terms of another independent variable and in powers of the
known small parameter. The terms in the expansion of the original independent variable
are chosen in such a way that they eliminate the undesirable terms in the expansion of the

dependent variables. This is achieved in the following way.
Let 7 be the new independent variable and let the original independent variable 7
admit an expansion of the form -
) - (2) .
o mlexprm) =4 ar (euym) + a2 (oppm) + .. .. (67)
In the expansion for e, w and v, = is replaced by  and the governing equations (46) to (48)
in terms of the new independent variable arz written as '

dw dv ) . de o :
H%+#7;]—+(1+C€)_d;)—=2#“% » ‘ _ (58)

8+ 305)52%;—2 = «{2 % (12 + 8ce + 0%?) & — 24v (1 4 ce)w} g% (59)

(8 + B + Bce) (1 — e)? —gf;—z —24 <1+ce>v§-; : (60)

It is assumed that #¥ () = 0 at 9 = 0 for ¢ > 1. The initial conditions (49) are cor-
respondingly written as : '
, - . 8-+ 5¢

Proceeding on the above lines the expansions for ¢, w and v are substituted in (58)
to (60) to obtain solutions of various orders. v

o ’ (61)

The zeroth order solution is given by

" (e) (0) 0 - ' ;
e =0, w =0, v =0 (62)
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The first order solution is similarly giVen as under -

M 8+5c .8+ bc 24 7 : N
¢ =2p{n———é‘r+f-%:%¢xp(f 8_:|-—5"0)} : (63)

M) 8 + bc 247\
== rew (- gt e
(L ’ '
w =0 ‘ , (65)
The equations for the second order approximation can be written as
' @ e e 2
w v € € v
A R R 0
2) ‘ ]
w =0 = - 67
@ . 2 exp (_ 247 )
v 24 O 8+5¢ L 8+5c)
dy +8+5c” - 8 - Be {2;4(]6—}—150—{—50_)(4— 24
8 -+ be \* . oy
+‘2p(2—4) (16’—l— 15c+562)exp(— 8~+4c)
+@+59 21 N
. @ - R ‘ '
In order that v may be free of undesirable terms
‘ b
(84 Bo) =+ 2u (16 + 15c + 5e¥) (7, - M)=‘o (69)
dn ; 24 _
' This equation, on integration, gives -
. p (16 + 15¢ -+ 5¢2?) 8 + ¢ 70)
TET 8 + bo AT i (
* " From (66) and (68) the approximations of the second order are given by
@M @ g N2 oo
€ = Qur—u —-—2(6') ‘ S (71)‘”
®  p(8 + Bc) (16 -+ 15c + 5c2) ( 24y ) 48y )}
v = 14 P\~ 5§15 —° ( ~&r5)s (@

o FEE
It is now apparent from (72) that v no longer. contains terms of the form

ﬂqigp( - -5%:—7%2) and 72 exp( —_ 8-‘}2-22 ) and jg,’ thexjgfqre,‘ free Qf gnﬂégirable terms,
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This solution is well behaved and unifd;mlyva;lid; Thus the Lighthill technique has helped

in removing the undesirable terms. R
Exactly in the above manner, e'(flfa?ﬁiiir;s fdi:’ﬁlie"t;ﬁird order api;mxiﬁiations are

. @ (3 ‘ .
derived and solved. The choice of 7+ which will render v uniformly valid is suggested
as i . o - T )

’1+x“ . ; 1._FA L i

; i - a ndll il .—_1) R -
ST T B oty @—sae {57 (14 57) em(—y )}
—i—. (N — 4M3) (1 4+ )y - 3N?7? + ‘ i——_i——/\ns] ) “ ] |  (73)
' - e @ T
The corresponding values of ¢, v, and w are
R @ @ e @ o M) ‘
€ =2ur —cCe € —pv — —V-( € ) (74)
® 1N § . 3y |
67 - ' 9 .
exp ( — 1———/\) + (N — 28M2) exp (—— 1———_1_77)‘ )} (75)
@ 1Nz | '
w =) S . (18
where ) ~ '
5¢ "
A= 8

M =10+ 151 + 8 |
N = 64MA(L + A) + 40 (5,— A)(1 + X) + 8M2 — &M (10 + 7A)

Proceeding in a similar manner the approximations of any higher order can be
obtained. A )

¢

. ~ RESULTS AND DISCUSSION
With the help of the heat balance integral and Lighthill's technique for rendering
approximate solutions wniformly valid we have been able to express 7, ¢, vand w in
the form of series in ascending powers of o and as functions of the new independent
variable 7 and ¢, p and ». The series for = after substituting for 7(Vand =3 from (70)

and (78) respectively can be written as
v T=n+dﬂf~“—)—%-cl' +odpt g e (17
This is clearly a function of #, ap and c. The dimensionless melt thickness e can
be found from (63), (71) and (74) as o :
ot Sj & 4o p? f(“”z,) ,ig’»c—") + aa'#’a,'f—“—(g)n (;7 ’ b)s+.§... :(’}78)

¢ N L - RN 7 S e T S e

€= p
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The expanssions for v and w can similarly be vg-iveii by the followiiig eduétions P

v = a {,,a) o) + o ‘f’—%’ﬁ+ oy ‘f’—‘g’—‘% } (19)

: 2,,2 ell 2
"= a { “p [« (2, o] } (80)
14 ‘L"

From (78), € is a function of ap, ¢ and 7. From (77) it is possible to calculate
physically nreaningful dimensionless time 7 from the fictitious time 7 for various values
of ap and ¢, It is also clear from the above equations that the parameter » occurs in the
third order approximation and that « and p occur always as «p. Fig. 2 is a plot of

€v8 ﬁ“;—tm) for values of ¢=0+2, v=0-6and ap=0-15, 0-30 and 0-40. It is clear from

Fig. 2 that - when the values of ap are
increased less time will be required for
melting,  Fig. 3 shows the time required to
melt a tube for two different values of
¢ and for ap == 0-15 and v = 06 and
1-0. ‘ '

1.0 4
[ 2]
on
[ B
[ X3

w13

vals o) 04

The temperature distribution in the
melted and unlelted regions can now be deter-
mined from the non-dimensional form of (26)

Y Y S Y S S S 6by applying boundary conditions (40) to (45)
F1g. 2—Melt thickness vs time for c¢=0-2, v=0: relations (50) and (61) and is given by
and various values of a.

02

" “ =048
0.9 4
04 »=10 v =06 , V=10
07 4 . .
» =04
064 c=01 : ,
0.5 4
0.44 c=02
wad S
224
o1d”
0o 0.02 0.04 0.9 0.08 0.10 0.12 ’XH 06 X X 0. 024 0.26
! N Kylt:m)

Tre. 3—Melt thickness vs time ford g = 0.15, ¢ = 0.1 and 0.2 and v =0.6 and 1.0
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0081) 07 <H =04

[
e, 0 06 ) v so.s

(X (X} 02 03 0.4 [X) 0. or
60 01 062 03 04 05 06 07 08 09 Lo tat-tm}

Fio. 4—Temperature distribution in the solid Fre. 5—Temperature time history at the outer
region for ¢ = 0-2, v=0-6, ,qu = 0.1% and surface of the cylinder for ¢=0-2, v=0-6 and
various values of v ap =015 and 0-30

. 4
w = (e—a) ["?,ﬁ“(s _‘l_'gfe)es { = (3+ce)e2—-12w}]
oL <er>0 (8l)

12 v 1 —2\2
" = ST {1- (=9 he<agnoso @

With the help of the above equations it is possible to determine the temperature
distribution in both melted and unmelted regions. Fig. 4 gives the temperature distribution

%; vs x for different values of 7 and ¢=0+2, ap =0-15 and v =0-6. Fig. 5 gives
2 ]

the temperature time history at the insulated surface for values of ¢ = 02, =06 and
ap = 015 and 0+30. It is clear from Fig. 5 that the temperature of the solid portion
of the tube is immediately raised to the melting temperature and the heat subsequently
applied helps to produce melting and to raise the temperature of the molten portion.
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