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A bivariate gamma distribution as a model in life testing problem has been proposed and
various statistical properties are studied. . L.

Freund® has considered a bivariate extension of the exponential distribution proposed
a8 a model in life testing for two component systems and more recently following a similar -
approach, the authors? have considered a further generalisation to obtain bivariate models
of life time for such systems. In this paper, the authors consider a further extension of the
‘problem and obtain a bivariate gamma distribution as a model in life testing. Bivariate
and multivariate extensions of gamma distribution already existing in literature 34
bave been derived in a manner such that the marginal distributions reduce to the same
form as the parent population. The distribution considered in this paper is, however,
obtained bearing the problem of life testing specifically in mind and it is found that the
marginal distributions are not of gamma type. The study of the statistieal properties of
the proposed model have also been considered. The results for the general case seem to be
intractable and therefore, in view of the complexity involved, suitable approximations
have been taken.

DERIVATION OFTHE MODEL -

We assume that the random variables X and Y represent the life times of two com-
ponents 4 and B respectively in a two component system, X * represents the life time of the
component A if the component B is replaced with the component of the 'same kind each
time it fails (if necessary more than once), and Y* represents the life time of the component
B if the component 4 is replaced with a component of the same kind each time it fails (if
necessary more than once). We also agsume that X* and Y* are independently distributed
gamma variates given below: ‘ : '
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Under these assumptions the element of probability that the component 4 fails first at
time #* and that the component B has not yet failed is - :

[ f(@*) do*] [1~Ls(8, 9) ] @

?nd (tihe element of probability that the component B fails first at y* and 4 has not yet
ailed is

[f(y" dy*] [1—Ip (% P)] ‘ 4)
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' whereé

and ‘ 0 ' S
Iy* (@ p) = f f (x*) dz* . ) ’ (6)

Furthermore, the conditional probabxhty density of Y gwen that the oomponent A
fails at 2* is

o fe™
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=0 otherwme A | R o (7

and mmﬂarly the cond1txonal probabxhty denslty of X given that the component B fails
first at y* is .

: (%) - n , ,
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= 0 otherwise. . ‘ o ®

Considering now the case where the components are not replaced the element of pro-
bablhty that the component A fails first at @ and that the component B has not yet failed

is
: [f(w)dx][l—I,,(ﬁ,q)] - 9)

analogous to (3) and the element of probablhty that the component B falls ﬁrst at y and
that 4 has not yet falled i8 o _

L) dy101=1, (a p)] o . (10_)
analogous to (4), where f(z), f(y), Iz (B, ¢g), and I, («, p ) are given by (1),
(2) (5) and (6) respectively, with stars(*) omitted.

" In order to completely specify the bivariate model under consideration we assume
that when the component B fails, the system still works but the conditional probability

density of X given that the component B fails ﬁrst at y is of the same form as (8) though the
parameters cha,nge from p and a to p’ and o respectlvely, that is,

- *
9@ = [1—{3/% T (0<y<e<w)

=0 otherwise o ‘. ' ‘ (11)

where

Vo pe=ED . Tesops00<o<w) (9
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and , ’
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: Sxmﬂarly the conditional probablhty density of ¥ glven that the component A fails a
first at 2 is, . ' o
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It now easily follows from these assumptions that the joint denslty of X and Y i is -,
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This p.d.f. may alternatively be expressed in the form given bélow :
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is the well-known Kummer’s function®. -
For the particular case p = p' = ¢ = ¢’ = 1, itis easily seen that the p.d.f.
(18) reduces to the model of Freund!. C '
STATISTIGAL PROPERTIES OF THE PROPOSED MODELS

The evaluation of the integrals involved in the general expression for the moments
seems to be extremely difficult and therefore two cases 1mposmg certain restrictions on the
parametric values have been discussed separately

Case1: p, ¢, p' and ¢ large.

_ 'This imposes certain restrictions on the shape of the distributions (1) and (2) and we
shall first confine our attention to this case. We have for (r, s) th moment the expression

“rs=jf’:c'y’f xy)dxdy (19)
where the integration is to be carried over the appropna te regions &s glven by (18).

It is well known that for large values of ¢ and b such that (b~a) remains bounded we
have for a given value z the approximation

Filebie] = 6"[1-{-0(”’]"1 )]
and we use this fact in evaluating

Prs = T v 1* @) [ _T z ¢ (@) do ] dy+f wf* (2) [} v ¥ ) dy ]dw
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Remembering the fact that I etc are large so theﬁ the second and higher orders of

I (1+1) ete. could be neglected the last mtegml yields the followmg result for the moments :
g R ; ,
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Margmal densities: The margmal dmtnbutxon of z is glven by

F @)= (x)f¢<y>dy+¢(w>f r o

Using the appmximatioﬁs mentioned earlier, we get

F@) = f* (2)
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- In 8 similar manner we get the marginal densities of y thusy
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(22)

(23)

Thus we see that the marginal dens1t1es are not of gamma type unlike the extension

proposed earlier.

Conditional mean : Obtaining the oondltlona.l density f(y/z) by dividing the blvanatc
density by the marginal density of z it can be seen that _

(

F@EG =400 [ yf* 0 dy+7* 0 f TIOL
z ’ 0
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Thus the regression of y on  is not linear. In a similar manner it can be easily shown
that the other regression equation is also not linear. :

Case 11 : p, q, ' and ¢’ very small ‘

This again imposes certain restrictions on the shape of the distribution. But if themean
life times of the two components are not very small then naturally « and g will be modera-
tely large. Further we assume that when a component fails, the mean life time of the other
component working singly reduces but not drastically eo that o and g’ are also large.
However, we assume that o/ << fand f’ < « which may give a physical interpretation
that the original mean life times are greater than the reduced mean life times. Now the
moments of the bivariate distribution may again be obtained by integration of (18) over
appropriate regions. Under the assumptions mentioned above, for a given z we have used
the approximation ‘ ‘

F o ors: —2 ~[1___w_,,_é__']
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and have neglected the terms of the second and higher orders of smallness: Thus carrying
out the integration (18), we get ‘ ' : ,
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“where SN :
JFi[a; b;c;a]is the Well Teiown Glaviss functlon deﬁne‘d by

(a)n (b)n an

o' [a; bye; 2] = o e

‘ “n=0
the series ‘being convergent whenever [z < 1 and when z=1 prowded that Rl(c—a—Db)>
and when z= —1 prov1ded that Rl (o———w—b) >—1

Thus under the assumptions mentloned earlier, the moments age given by (25). For
B > aord > B, obviously no morments exist. It may be easily seen that, for the
limiting case o/ = B as well as f' = «, no moments ex1st ,

Margmal densities : Marginal distribution of zis again given by (21). Using the appro
ximations discussed for the case II and carrying out the integration we get

—f@ [1— ( ””/5)' - Ty [g; g+1; —/f] ]

S R
l (q+1)

L [@tD

x \Pte
e (E\) P tepert—al]
T T (@@ T+ ' |

P EASAC S i
[@=+2) | @) I [P +q+1 p+q+2 —a/f]

ptq v o
S
B lW)oﬂ“ r@(p_l_q) I [p+¢ pg+1;— /8] |
p+1 (g \ptytl
G
T +1)| yort! :P+q+1)

Fi{p+ett pho; —.'——”5)} (26)
J

Ina s1mﬂar manner the margmal density G(y) may also be calculated and be seen
that it is not of gamma type.

Conditional mean :

Proceeding in the same manner as in case I, we get
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In a similar manner the conditional mean E (z/y) may also be worked out.. Here
also it may be observed that the regression equations are generally nonlinear.

It may also be remarked that for the particular case p = p’ and & = o, the marginal
densities F(x) obtained for Case I-and II as given by (22) and (26) respectively reduce
to f(x) as given in (1). However, this does not provide any information about the inde-
pendence of the life of the component A from that of component of B. In fact it does
not follow that f(y/z) = f(y) in this case as might have been expected. But if we take
q = ¢’ and B = B’ in addition to p=p’ and « = &’ it may be easily seen that f(y/z) = f(y)
and thus the life times of A and B are independent. Analogous arguments, of course,
~ apply for the marginal density G(y). ' e
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